S.E. (Computer / Information Technology)
 Engineering Mathematics - III
 2012 Course

Time: 2Hours
Max. Marks : 50
Instructions to the candidates:

1) Solve Q1 or Q2, Q3 or Q4, Q5 or Q6 and Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Calculator is allowed.
5) Assume Suitable data if necessary

Q1) a) Solve any two of the following
i) $\quad\left(D^{2}+4\right) y=\cos 3 x \cdot \cos x$
ii) $\quad\left(D^{2}+6 D+9\right) y=e^{3 x} / x^{2} \ldots($ (by variation of parameters method)
iii) $\quad x^{3}\left(d^{3} y / d x^{3}\right)+2 x^{2}\left(d^{2} y / d x^{2}\right)+2 y=20(x+1 / x)$
b) Obtain $\mathrm{f}(\mathrm{k})$ given that,
$\mathrm{f}(\mathrm{k}+2)+5 \mathrm{f}(\mathrm{k}+1)+6 \mathrm{f}(\mathrm{k})=0, \quad \mathrm{k} \geq 0 \mathrm{f}(0)=0, \mathrm{f}(1)=2$
by using Z transform.
Q2) a) An emf $E \sin (p t)$ is applied at $t=0$ to a circuit containing a condenser ' C ' and
Inductance ' L ' in series. The current ' x ' satisfies the equation
$\mathrm{L}(d x / d t)+\frac{1}{C} \int x d t=E \sin (p t)$
Where $=\frac{-d q}{d t}$. If $p^{2}=\frac{1}{L C}$ and initially the current x and charge q is zero then show that current in the circuit at any time t is $\frac{E}{2 L} t \sin (p t)$.
b) Solve the integral equation

$$
\int_{0}^{\infty} f(x) \cos \lambda x d x= \begin{cases}1-\lambda & 0 \leq \lambda \leq 1 \\ 0 & \lambda>1\end{cases}
$$

And hence show that $\int_{0}^{\infty} \frac{\sin ^{2} z}{z^{2}} d z=\pi / 2$
c) Attempt any one
i) Find the Z- transform of $\mathrm{f}(\mathrm{k})=e^{-2 k} \cos (5 k+3)$ WWW.manaresults.co.ュn
ii) Find the inverse Z - transform of $\frac{z(z+1)}{z^{2}-2 z+1}, \quad|z|>1$

Q3)

Q6)
a) The first four moments of a distribution about 2 are $1,2.5,5.5$ and 16. Calculate the first four moments about the mean, A. M., S. D., β_{1} and β_{2}
b) In a certain examination 200 students appeared. Average marks obtained were 50% with standard deviation 5%. How many students do you expect to obtain more than 60% of marks, supposing that the marks are distributed normally?
(Given $\mathrm{z}=2$; $\mathrm{A}=0.4772$)
c) Find the directional derivatives of:
$\emptyset=x y^{2}+y z^{2}+z x^{2}$ at $(1,1,1)$ along the line $2(x-2)=y+1=z-1$

OR

a) Calculate the coefficient of correlation for the following data

x	1	2	3	4	5	6	7	8	9
y	9	8	10	12	11	13	14	16	15

b) Prove the following (Any one)
i) $\quad \nabla^{4} r^{4}=120$
ii) $\quad \nabla \cdot\left[r \nabla \frac{1}{\mathrm{r}^{5}}\right]=\frac{15}{\mathrm{r}^{6}}$
c) Show that $\bar{F}=\left(x^{2}-y z\right) \bar{\imath}+\left(y^{2}-z x\right) \bar{\jmath}+\left(z^{2}-x y\right) \bar{k}$ is irrotational. Also find Φ such that $\bar{F}=\nabla \Phi$
a) Find the work done in moving a particle along $\mathrm{x}=\mathrm{a} \cos \Theta, \mathrm{y}=\mathrm{a} \sin \Theta, \mathrm{z}=\mathrm{b} \Theta$, from $\Theta=\frac{\pi}{4} \boldsymbol{t o} \boldsymbol{\theta}=\frac{\pi}{2}$ under a field of force given by $\overline{\boldsymbol{F}}=-3 \mathrm{a} \sin ^{2} \Theta \cos \Theta \hat{\boldsymbol{\imath}}+\mathrm{a}\left(2 \sin \Theta-3 \sin ^{3} \Theta\right) \hat{\boldsymbol{\jmath}}+\mathrm{b} \sin 2 \Theta \widehat{\boldsymbol{k}}$
b) Evaluate $\iint_{s}(y z \hat{\imath}+z x \hat{\jmath}+x y \hat{k}) \cdot d \bar{s}$, where s is the curved surface of the cone $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2}, \quad \mathrm{z}=4$
c) Using Stokes Theorem to evaluate $\int_{c}(4 y \hat{\imath}+2 z \hat{\jmath}+6 y \hat{k}) \cdot \mathrm{d} \bar{r} \quad$ where C is the curve of intersection of $x^{2}+y^{2}+z^{2}=2 z$ and $x=z-1$

OR

a) A vector field is given by $\bar{F}=(2 x-\cos y) \hat{\imath}+x(4+\sin y) \hat{\jmath}$, evaluate $\int_{c} \bar{F} . d \bar{r}$, where c is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$.
b) Prove that $\iiint_{v} \frac{1}{r^{2}} d v=\iint_{S} \frac{1}{r^{2}} \bar{r} . d \bar{s}$, where s is closed surface enclosing the volume v. Hence evaluate $\iint_{s} \frac{x \hat{\imath}+y \hat{\jmath}+z \hat{k}}{r^{2}} \cdot d \bar{s}$, where s is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
c) If $\bar{E}=\nabla \emptyset$, and $\nabla^{2} \emptyset=-4 \pi \rho$, prove that $\iint_{s} \bar{E} \cdot d \bar{s}=-4 \pi \iiint_{v} \rho d v$

Q7)
a) Find the value of p such that the function
$\mathrm{f}(\mathrm{x})=\mathrm{r}^{2} \cos 2 \Theta+\mathrm{i} \mathrm{r}^{2} \sin p \Theta \quad$ becomes analytical function.
b) Evaluate $\oint_{C} \frac{z^{2}+\cos ^{2} z}{\left(z-\frac{\pi}{4}\right)^{3}} d z$
where c is a circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$
c) Find the bilinear transformation which maps $1, i,-1$ from z plane into $i, 0,-i$ from the w plane

OR

Q8) a) Determine the analytic function $f(z)$ whose real part is

$$
\begin{equation*}
\mathrm{U}=\mathrm{x}^{3}-3 x y^{2}+3 \mathrm{x}^{2}-3 \mathrm{y}^{2}+1 \tag{05}
\end{equation*}
$$

b) Evaluate $\oint_{C}\left[\frac{\sin \pi z^{2}+2 z}{(z-1)^{2}(z-2)}\right] d z$
where c is a circle $\mathrm{x}^{2}+\mathrm{y}^{2}=16$
c) Show that the transformation $\omega=\sin \mathrm{z}$ transforms the straight lines $\mathrm{x}=\mathrm{c}$ of z plane into hyperbolas in the ω plane

