Total No. of Questions-8]
Seat
No.
[Total No. of Printed Pages-4
[4757]-1071
S.E. (Computer Engineering/Information Technology) (Second Semester) EXAMINATION, 2015 ENGINEERING MATHEMATICS-III (2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt four questions : Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of electronic non-programmble calculator is allowed.
(v) Assume suitable data if necessary.

1. (a) Solve (any two) :
(i) $\left(\mathrm{D}^{2}+9\right) y=x^{3}-\cos 3 x$
(ii) $\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) y=e^{-x} \log x$
(iii) $\quad(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-6(2 x+1) \frac{d y}{d x}+16 y=8(2 x+1)^{2}$.
(b) Find Fourier sine transform of $f(x)=e^{-x} \cos x, \quad x>0$. [4] Or
2. (a) A resistance of 50 ohms , an inductor of 2 henries and a 0.005 farad capacitor are connected in series with e.m.f. of 40 volts and an open switch. Find the instanteneous charge and current after the switch is closed at $t=0$, assuming that at that time charge on capacitor is 4 coulomb.
(b) Solve (any one) :
(i) Find z-transform of $f(k)=\frac{\sin a k}{k}, k>0$.
(ii) Find inverse z-transform of $\frac{3 z^{2}+2 z}{z^{2}+3 z+2}, 1<|z|<2$.
(c) Solve difference equation :

$$
f(k+2)-3 f(k+1)+2 f(k)=0, f(0)=0, f(1)=1
$$

3. (a) The first four monents of a distribution about the value 5 are $2,20,40$ and 50 . Obtain the first four central moments, mean, standard deviation and coefficient of skewness and kurtosis.
(b) A manufacturer of electronic goods has 4% of his product defective. He sells the articles in packets of 300 and guarantees 90% good quality. Determine the probability that a particular packet will violate the guarantee.
(c) Find the directional derivative of $x y^{2}+y z^{3}$ at (2, -1, 1) along the line $2(x-2)=(y+1)=(z-1)$.

Or

4. (a) In an intelligence test administered to 1000 students the average score was 42 and standard deviation 24 . Find the number of students with score lying between 30 and 54 .
(Given : For $z=0.5$, area $=0.1915$).
(b) Prove (any one) :
(i) $\nabla^{2}\left(\frac{\bar{a} \cdot \bar{b}}{r}\right)=0$
(ii) $\nabla \times\left(\frac{\bar{a} \times \bar{r}}{r}\right)=\frac{\bar{a}}{r}+\frac{(\bar{a} \cdot \bar{r}) \bar{r}}{r^{3}}$.
(c) Show that $\overline{\mathrm{F}}=r^{2} \bar{r}$ is conservative. Obtain the scalar potential associated with it.
[4]
5. (a) Evaluate :
[4]

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

where $\overline{\mathrm{F}}=\left(2 x+y^{2}\right) \bar{i}+(3 y-4 x) \bar{j}$ and
C is the parabolic arc $y=x^{2}$ joining $(0,0)$ and $(1,1)$.
(b) Using Stokes theorem, evaluate :

$$
\begin{equation*}
\int_{\mathrm{C}}(x+y) d x+(2 x-z) d y+(y+z) d z \tag{5}
\end{equation*}
$$

where C is the curve given by

$$
x^{2}+y^{2}+z^{2}-2 a x-2 a y=0, x+y=2 a
$$

(c) Use divergence theorem to evaluate :

$$
\iint_{\mathrm{S}}\left(x \bar{i}-2 y^{2} \bar{j}+z^{2} \bar{k}\right) \cdot d \bar{s}
$$

where s is the surface bounded by the region $x^{2}+y^{2}=1$ and $z=0$ and $z=1$.

Or
6. (a) Apply Green's theorem to evaluate :

$$
\int_{\mathrm{C}}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y
$$

where C is the boundary of the area enclosed by the x-axis and the upper-half of the circle $x^{2}+y^{2}=16$.
(b) Using Stokes theorem, evaluate

$$
\iint_{S}(\nabla \times \bar{F}) \cdot d \bar{s}
$$

where $\overline{\mathrm{F}}=3 y \bar{i}-x z \bar{j}+y z^{2} \bar{k}$ and ' s ' is the surface of the paraboloid $2 z=x^{2}+y^{2}$ bounded by $z=2$.
(c) Show that :

$$
\iiint_{\mathrm{V}} \frac{2}{r} d v=\iint_{\mathrm{S}} \frac{\bar{r} \cdot \hat{n}}{r} d s
$$

7. (a) Find the imaginary part of the analytic function whose real part is $x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}$.
(b) Evalaute :

$$
\oint_{\mathrm{C}} \frac{z^{2}+1}{z^{2}-1} d z
$$

where C is the circle :

$$
\begin{equation*}
|z-1|=1 \tag{4}
\end{equation*}
$$

(c) Find the bilinear transformation, which maps the points

$$
\begin{aligned}
& z=-1,0,1 \\
& \text { on to the points } \\
& w=0, i, 3 i \\
& \text { respectively. }
\end{aligned}
$$

Or

8. (a) Show that analytic function $f(z)$ with constant amplitude is constant.
(b) Evaluate the following integral using residue theorem :

$$
\oint_{\mathrm{C}} \frac{4-3 z}{z(z-1)(z-2)} d z
$$

where C is the circle :

$$
\begin{equation*}
|z|=\frac{3}{2} . \tag{4}
\end{equation*}
$$

(c) Find the image of the straight line $y=3 x$ under the transformation

$$
\begin{equation*}
w=\frac{z-1}{z+1} . \tag{5}
\end{equation*}
$$

