Total No. of Questions-8]
[Total No. of Printed Pages-6

Seat No.	

[5352]-166
S.E. (Computer Engineering/Information Technology)
(II Sem.) EXAMINATION, 2018
ENGINEERING MATHEMATICS-III
(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of electronic non-programmable calculator is allowed.
(v) Assume suitable data, if necessary.

1. (a) Solve (any two) :
(i) $\quad\left(\mathrm{D}^{3}-7 \mathrm{D}-6\right) y=e^{2 x}(1+x)$
(ii) $\left(\mathrm{D}^{2}+4\right) y=\frac{1}{1+\cos 2 x}$ by method of variation of parameters

$$
\text { (iii) } x^{3} \frac{d^{2} y}{d x^{2}}+3 x^{2} \frac{d y}{d x}+x y=\sin (\log x)
$$

(b) Find Fourier sine transform of :

$$
f(x)=\frac{e^{-a x}}{x}, \quad x>0 .
$$

Or

2. (a) A circuit consists of inductance L and condenser of capacity C in series. An emf $\mathrm{E} \sin p t$ is applied at $t=0$, the initial change and current being zero. If $p^{2}=\frac{1}{\mathrm{LC}}$, find current in the circuit at time t.
(b) Find inverse z-transform of (any one) :
(i) $\mathrm{F}(z)=\frac{z^{3}}{(z-1)(z-2)^{2}}, \quad|z|>2$
(ii) $\mathrm{F}(z)=\frac{10 z}{(z-1)(z-2)}$ by inversion integral method.
(c) Solve difference equation :
$f(k+2)-3 f(k+1)+2 f(k), \quad f(0)=0, f(1)=1$.
3. (a) The first four moments of a distribution about the value 4 are $1,4,10$ and 45 . Obtain the first four central moments, mean, standard deviation and coefficient of skewness and kurtosis.
(b) A sample of 100 dry battery cells tested to find the length of life produced the following results; $\overline{\mathrm{X}}=12$ hours, $\sigma=3$ hours. Assuming the data to be normally distributed, what percentage of battery cells are expected to have life between 10 and 14 hours ? [Given : For $z=0.67$, area $=0.2487]$
(c) If the directional derivative of :

$$
\begin{equation*}
\phi=a(x+y)+b(y+z)+c(x+z) \tag{4}
\end{equation*}
$$

has maximum value 12 in the direction of the line :

$$
\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{3},
$$

find the values of a, b, c.

Or

4. (a) Find the correlation coefficient for the following data : [4]

\boldsymbol{x}	\boldsymbol{y}
43	99
21	65

$25 \quad 79$
$42 \quad 75$
$57 \quad 87$
59
81
(b) Prove (any one) :
(i) $\quad \nabla^{2}\left[\nabla \cdot\left(\frac{\bar{r}}{r^{2}}\right)\right]=\frac{2}{r^{4}}$
(ii) $\nabla \times\left[\frac{1}{r}\left(r^{2} \bar{a}+(\bar{a} \cdot \bar{r}) \bar{r}\right)\right]=0$.
(c) Show that :

$$
\overline{\mathrm{F}}=\left(2 x z^{3}+6 y\right) i+(6 x-2 y z) j+\left(3 x^{2} z^{2}-y^{2}\right) k
$$

is irrotational. Find the scalar potential associated with it.
5. (a) Evaluate :

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

where

$$
\overline{\mathrm{F}}=\left(x^{2}+x y\right) \bar{i}+\left(x^{2}+y^{2}\right) \bar{j}
$$

and C is the square formed by the lines $x= \pm 1, y= \pm 1$.
(b) Apply Stokes theorem to evaluate :

$$
\begin{equation*}
\iint_{\mathrm{S}}(\nabla \times \overline{\mathrm{F}}) \cdot \hat{n} d \mathrm{~S} \tag{5}
\end{equation*}
$$

where

$$
\overline{\mathrm{F}}=\left(x^{3}-y^{3}\right) \bar{i}-x y z \bar{j}+y^{3} \bar{k}
$$

and S is the surface $x^{2}+y^{2}+z^{2}-2 x=1$ above the plane $x=0$.
(c) Show that :

$$
\iiint_{\mathrm{V}} \frac{d \mathrm{~V}}{r^{2}}=\iint_{\mathrm{S}} \frac{\bar{r} \cdot \hat{n}}{r^{2}} d \mathrm{~S} .
$$

Or
6. (a) Using Green's theorem, evaluate :

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

where

$$
\overline{\mathrm{F}}=x^{2} \bar{i}+x y \bar{j}
$$

and C is the region enclosed by $y=x^{2}$ and the line $y=x$.
(b) Apply Stokes theorem to evaluate :

$$
\begin{equation*}
\int_{\mathrm{C}}\left(\left(x^{2}+y^{2}\right) \bar{i}-2 x y \bar{j}\right) \cdot d \bar{r} \tag{5}
\end{equation*}
$$

where C is the rectangle bounded by the lines $x= \pm a$, $y=0$ and $y=b$.
(c) Evaluate :

$$
\begin{equation*}
\iint_{\mathrm{S}} 2 x^{2} y d y d z-y^{2} d z d x+4 x z^{2} d x d y \tag{4}
\end{equation*}
$$

over the curved surface of the cylinder $y^{2}+z^{2}=16$, bounded by $x=0$ and $x=2$.
7. (a) If $u=x^{3}-3 x y^{2}$, find value of v such that $w=u+i v$ is an analytic function. Write w in term of z.
(b) Evaluate :

$$
\begin{equation*}
\oint_{\mathrm{C}} \frac{2 z^{2}+z+5}{\left(z-\frac{3}{2}\right)^{2}} d z \tag{4}
\end{equation*}
$$

where C is the ellipse :

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1 .
$$

(c) Find the image of straight lines $x=1$ and $y=1$ under the transformation $W=z^{2}$.

Or
8. (a) Show that real and imaginary parts of an analytic function are always harmonic.
(b) Using Cauchy's residue theorem evaluate :

$$
\oint_{\mathrm{C}} \frac{12 z-7}{(z-1)^{2}(2 z+3)} d z
$$

where C is the circle :

$$
|z+i|=\sqrt{3} .
$$

(c) Find the bilinear transformation which maps the points $z=1, i, 2 i$ on the points $w=-2 i, 0,1$ respectively. [5]

