Total No. of Questions-8]
[Total No. of Printed Pages-4+2

Seat	
No.	

[4657]-571
S.E. (Computer Engineering/Information Technology)
(II Sem.) EXAMINATION, 2014
ENGINEERING MATHEMATICS-III
(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt 4 questions : Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of electronic non-programmable calculator is allowed.
(v) Assume suitable data whenever necessary.

1. (a) Solve any two :
(i) $\left(\mathrm{D}^{2}+6 \mathrm{D}+9\right) y=x^{-3} e^{-3 x}$
(ii) $\quad\left(\mathrm{D}^{2}-2 \mathrm{D}+2\right) y=e^{x} \tan x$ (by variation of parameters method)

$$
\text { (iii) } x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\log x) \text {. }
$$

(b) Find the Fourier sine and cosine transforms of $e^{-m x}$, $m>0$.
P.T.O.

Or

2. (a) The currents x and y in the coupled circuits are given by :

$$
\begin{align*}
& (\mathrm{LD}+2 \mathrm{R}) x-\mathrm{R} y=\mathrm{E} \\
& (\mathrm{LD}+2 \mathrm{R}) y-\mathrm{R} x=0 . \tag{4}
\end{align*}
$$

Find the general values of x and y in terms of t.
(b) Find the inverse z-transform (any one) :
(i) $\quad \mathrm{F}(z)=\frac{10 z}{(z-1)(z-2)}$ (by inversion integral method)
(ii) $\mathrm{F}(z)=\frac{z}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{5}\right)},|z|>\frac{1}{4}$.
(c) Solve the difference equation :

$$
f(\mathrm{~K}+1)-f(\mathrm{~K})=1, \mathrm{~K} \geq 0, f(0)=0
$$

3. (a) The first four moments about 44.5 of a distribution are -0.4 , 2.99, -0.08 and 27.63. Calculate moments about mean, coefficients of Skewness and Kurtosis.
(b) The incidence of a certain disease is such that on the average 20% of workers suffer from it. If 10 workers are selected at random, find the probability that :
(i) exactly 2 workers suffer from disease.
(ii) not more than 2 workers suffer.
(c) Find the directional derivative of :

$$
\phi=4 x z^{3}-3 x^{2} y^{2} z
$$

at (2, $-1,2$) along a line equally inclined with coordinate axes.

Or

4. (a) A random sample of 200 screws is drawn from a population which represents size of screws. If a sample is normally distributed with a mean 3.15 cm and S.D. 0.025 cm , find expected number of screws whose size falls between 3.12 cm and 3.2 cm .
[Given : For $z=1.2$, area $=0.3849$; for $z=2$, area $=0.4772$]
(b) Show that (any one) :
(i) $\nabla \cdot\left(\frac{\bar{a} \times \bar{r}}{r}\right)=0$
(ii) $\quad \nabla^{4}\left(r^{2} \log r\right)=\frac{6}{r^{2}}$.
(c) A fluid motion is given by :

$$
\bar{v}=(y \sin z-\sin x) \hat{i}+(x \sin z+2 y z) \hat{j}+\left(x y \cos z+y^{2}\right) \hat{k}
$$

Is the motion irrotational ? If so, find the scalar velocity potential.
5. (a) Find the work done by the force :

$$
\begin{equation*}
\overline{\mathrm{F}}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k \tag{4}
\end{equation*}
$$

in taking a particle from $(1,1,1)$ to $(3,-5,7)$.
(b) Use divergence theorem to evaluate :

$$
\iint_{\mathrm{S}}\left(y^{2} z^{2} i+z^{2} x^{2} j+x^{2} y^{2} k\right) \cdot d \bar{s}
$$

where s is the upper half of the sphere $x^{2}+y^{2}+z^{2}=9$ above the x o y plane.
(c) Apply Stokes' theorem to evaluate :

$$
\int_{\mathrm{C}}(4 y d x+2 z d y+6 y d z)
$$

where C is the curve $x^{2}+y^{2}+z^{2}=6 z, z=x+3$. [4]

Or
6. (a) Find the work done in moving a particle from $(0,1,-1)$ to

$$
\begin{align*}
& \left(\frac{\pi}{2},-1,2\right) \text { in a force field : } \tag{4}\\
& \overline{\mathrm{F}}=\left(y^{2} \cos x+z^{3}\right) i+(2 y \sin x-4) j+\left(3 x z^{2}+2\right) k
\end{align*}
$$

(b) Evaluate :

$$
\iint_{\mathrm{S}}\left[\left(x+y^{2}\right) i-2 x j+2 y z k\right] \cdot d \bar{s}
$$

where s is the plane $2 x+y+2 z-6=0$ considered as one of the bounding planes of the tetrahedron $x=0$, $y=0, z=0,2 x+y+2 z=6$.
(c) Verify Stokes' theorem for :

$$
\overline{\mathrm{F}}=-y^{3} i+x^{3} j
$$

and the closed curve c is the boundary of the circle $x^{2}+y^{2}=1$.
7. (a) Find the condition under which :

$$
\begin{equation*}
u=a x^{3}+b x^{2} y+c x y^{2}+d y^{3} \tag{4}
\end{equation*}
$$

is harmonic.
(b) Evaluate :

$$
\begin{equation*}
\oint_{\mathrm{C}} \frac{4 z^{2}+z}{z^{2}-1} d z \tag{5}
\end{equation*}
$$

where $\mathrm{C}:|z-1|=3$.
(c) Show that :

$$
w=\frac{z-i}{1-i z}
$$

maps upper half of z-plane onto interior of unit circle in w-plane.
Or
8. (a) Find the harmonic conjugate of :

$$
u=r^{3} \cos 3 \theta+r \sin \theta
$$

(b) Evaluate :

$$
\begin{equation*}
\oint_{\mathrm{C}} \frac{\sin 2 z}{\left(z+\frac{\pi}{3}\right)^{4}} d z, \tag{5}
\end{equation*}
$$

where $\mathrm{C}:|z|=2$.
(c) Find the bilinear transformation which maps the points 1, $0, i$ of the z-plane onto the points $\infty,-2,-\frac{1}{2}(1+i)$ of the w-plane.

