Total No. of Questions-8]
Seat
No.
[Total No. of Printed Pages-5
[5252]-166
S.E. (Comp/IT.) (Second Semesters) EXAMINATION, 2017 ENGINEERING MATHEMATICS-III

(2012 PATTERN)

Time : Two Hours Maximum Marks : 50
N.B. :- (i) Attempt four questions : Q. 1 or Q. 2; Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of non-programmable electronic pocket calculator is allowed.
(v) Assume suitable data, if necessary.

1. (a) Solve any two :
(i) $\left(\mathrm{D}^{4}-1\right) y=\cosh x \sinh x$
(ii) $\quad\left(\mathrm{D}^{2}-4 \mathrm{D}+4\right) y=e^{2 x} \sec ^{2} x$ (By variation of parameters)
(iii) $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}=(2 x+3)(2 x+4)$
(b) Find the Fourier sine integral of :
$f(x)=x^{2}, 0<x<a$
$=0, x>a$
P.T.O.

Or

2. (a) An electric current consists of an inductance 0.1 henry, a resistance R of 20 ohms and a condenser of capacitance C of 25 microfarads. If the differential equation of electric circuit is :
$\mathrm{L} \frac{d^{2} q}{d t^{2}}+\mathrm{R} \frac{d q}{d t}+\frac{q}{\mathrm{C}}=0$, then find the charge q and current i at any time t, given that at $t=0, q=0.05$ Coulombs,

$$
i=\frac{d q}{d t}=0 \quad \text { when } \quad t=0
$$

(b) Find the Inverse Z-transform (any one) :
(i) $\mathrm{F}(z)=\frac{1}{(z-a)^{3}}$ (By using Inversion Integral Method).
(ii) $\mathrm{F}(z)=\frac{z^{2}}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{5}\right)}, \quad|z|>\frac{1}{4}$
(c) Solve the following difference equation to find $\{f(k)\}$: [4]

$$
\begin{aligned}
& f(k+2)+3 f(k+1)+2 f(k)=0 \\
& f(0)=0, f(1)=1
\end{aligned}
$$

3. (a) Calculate the correlation coefficient for the following data :

x	1	2	3	4	5
y	2	5	2	7	6

(b) A firm produces articles of which 0.1% are defective out of 600 articles. If wholesaler purchases 1000 such cases, how many can be expected to have two defectives ?
(c) Find the angle between the surfaces $x y^{2} z=3 x+z^{2}$ and $3 x^{2}-y^{2}+2 z=8$ at the point $(1,-2,1)$.

Or

4. (a) Find the directional derivative of $x z^{3}-x^{2} y z$ at the point $(2,1,-1)$ in the direction of tangent to the curve $x=e^{t} \cos t, y=e^{t} \sin t, z=e^{t}$ at $t=0$.
(b) If \bar{u} and \bar{v} are irrotational vectors, then prove that $\bar{u} \times \bar{v}$ is solenoidal vector.
(c) A random sample of 500 screws is drawn from a population which represents the size of screws. If a sample is distributed normally with a mean 3.15 cm and standard deviation 0.025 cm , find expected number of screws whose size falls between 3.12 cm and 3.2 cm . (Given for $\mathrm{z}=1.2$, area $=0.3849$, $z=2.0$, area $=0.4772$) .
5. (a) Evaluate :

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r} \text { where } \overline{\mathrm{F}}=z \bar{i}+x \bar{j}+y \bar{k} \text { and }
$$

C is the arc of the curve $x=\cos t, y=\sin t, z=t$ from $t=0$ to $t=\pi$
(b) Evaluate $\iint_{\mathrm{S}}(\nabla \times \overline{\mathrm{F}}) \cdot d \overline{\mathrm{~S}}$ for $\overline{\mathrm{F}}=y \bar{i}+z \bar{j}+x \bar{k}$ where S is the surface of paraboloid $z=9-x^{2}-y^{2}, z \geq 0$.
(c) If $\overline{\mathrm{E}}=\nabla \phi$ and $\nabla^{2} \phi=-4 \pi \rho$, then prove that $\iint_{\mathrm{S}} \overline{\mathrm{E}} . d \overline{\mathrm{~S}}=-4 \pi \iiint_{\mathrm{V}} \rho d v$. [4]

Or

6. (a) Using Green's theorem, evaluate :
$\int_{\mathrm{C}}\left(\frac{1}{y} d x+\frac{1}{x} d y\right)$ where C is the boundary of the region bounded by the parabola $y=\sqrt{x}$ and line $x=1$ and $x=4$. [5]
(b) Use divergence theorem to evaluate

$$
\iint_{\mathrm{S}}\left(y^{2} z^{2} \bar{i}+z^{2} x^{2} \bar{j}+x^{2} y^{2} \bar{k}\right) \cdot d \overline{\mathrm{~S}}
$$

where S is the upper part of the sphere $x^{2}+y^{2}+z^{2}=9$ above XOY plane.
(c) Prove that :

$$
\int_{\mathrm{C}}(\bar{a} \times \bar{r}) \cdot d \bar{r}=2 \bar{a} . \iint_{\mathrm{S}} d \overline{\mathrm{~S}}
$$

where S is any open surface with boundary C.
7. (a) Determine the analytic function $f(z)=u+i v$ in terms of z. Whose real part is $e^{2 x}(x \cos 2 y-y \sin 2 y)$.
(b) Using Cauchy's Integral Formula evaluate $\int_{\mathrm{C}} \frac{\cos \pi z}{z^{2}-1} d z$ where C is the rectangle with vertices $2 \pm i,-2 \pm i$.
(c) Find the bilinear transformation which maps the points $1, i,-1$ from z-plane onto the points $i, 0,-i$ of the W-plane.

Or

8. (a) If $f(z)=u+i v$ be an analytic function find $f(z)$. If $u+v=r^{2}(\cos 2 \theta+\sin 2 \theta)$.
(b) Using residue theorem evaluate :

$$
\int_{C} \frac{z^{3}-5}{(z+1)^{2}(z-2)} d z \text { where } \mathrm{C} \text { is }|z|=\frac{3}{2} .
$$

(c) Find the mapping of the line $2 y=x$ under the transformation

$$
\begin{equation*}
\mathrm{W}=\frac{2 z-1}{2 z+1} . \tag{4}
\end{equation*}
$$

