
[Total No. of Pages : 3]

S.E. 2012 (Electronics / E \& TC)
 Engineering Mathematics - III

(Semester - I)
Time: 2 Hours
Max. Marks : 50
Instructions to the candidates:

1) Answers Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Calculator is allowed.
5) Assume Suitable data if necessary

Q1) a) Solve (any two)
i) $\quad\left(D^{2}-1\right) y=x \sin x+\left(1+x^{2}\right) e^{x}$
ii) $d^{2} y / d x^{2}+y=\operatorname{cosec} x$ (by variation of parameters)
iii) $\quad x^{2} \quad d^{2} y / d x^{2}-4 x d y / d x+6 y=x^{5}$
b) Find Fourier cosine transform of the function

$$
f(x)=\left\{\begin{array}{lll}
\left\{\begin{array}{cc}
\cos x & 0<x<a \\
0 & x>a
\end{array}\right. \tag{4}
\end{array}\right.
$$

OR

Q2) a) A resistance of 50 ohms , an inductor of 2 henries and farad capacitor are all in series with an e.m.f. of 40 volts . Find the instantaneous change and current after the switch is closed at $\mathrm{t}=0$, assuming that at that time the change on the capacitor is 4 coloumb.
b) Solve (any one)
i) Find z transform for $\mathrm{f}(\mathrm{k})=(1 / 3)^{|\mathrm{k}|}$
ii) Find inverse z transform of $\left[\mathrm{Z}^{2} /(\mathrm{Z}-1 / 4)(\mathrm{Z}-1 / 5)\right]$ for $|\mathrm{Z}|<1 / 5$
c) Solve $\mathrm{f}(\mathrm{k}+2)+3 \mathrm{f}(\mathrm{k}+1)+2 \mathrm{f}(\mathrm{k})=0$

Given $f(0)=0, f(1)=1$

Q3) a) Solve the following differential equation to get $\mathrm{y}(0.1)$ $d y / d x=x-y^{2}, y(0)=1$
by using Runge- Kutta fourth order method. ($\mathrm{h}=0.1$)
b) Find Lagrange's long interpolating polynomial passing through set of points WWW.manaresults.Co.in

x	0	1	2
y	2	3	6

Use it to find y at $\mathrm{x}=1.5$ and find $\int_{0}^{2} y d x$.
c) Find the directional derivative of $\phi=3 \log (x+y+z)$ at $(1,1,1)$ in the direction of tangent to the curve $x=b \sin t, y=b \cos t, z=b t ~ a t ~ t=0$

OR

Q4) a) Show that (any one)
i) $\quad \nabla^{2}\left[\nabla \cdot\left(\bar{r} / r^{2}\right)\right]=2 / r^{4}$
ii) $\quad \nabla\left(\mathrm{a}^{-} . \mathrm{r}^{-} / \mathrm{r}^{3}\right)=\mathrm{a}^{-} / \mathrm{r}^{3}-3\left(\mathrm{a}^{-} . \mathrm{r}^{-}\right) / \mathrm{r}^{5} \mathrm{r}^{-}$
b) If \emptyset, ψ satisfy Laplace equation then prove that the vector $(\varnothing \nabla \psi-$ $\nabla \psi \varnothing$)is solenoidal.
c) Use Simpsons $1 / 3^{\text {rd }}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking seven ordinates

Q5) a) Find the work done by $\overline{\mathrm{F}}=\left(2 \mathrm{x}+\mathrm{y}^{2}\right) \hat{\boldsymbol{\imath}}+(3 \mathrm{y}-4 \mathrm{x}) \hat{\boldsymbol{\jmath}}$ in taking a particle around the parabolic arc $\mathrm{y}=\mathrm{x}^{2}$ from $(0,0)$ to $(1,1)$.
b) Apply stoke's theorem to evaluate $\oint_{c}(4 y d x+2 z d y+$ $6 y d z)$ whereis curve of intersection of $x^{2}+y^{2}+z^{2}=$ $2 z$ and $z=x+1$.
c) Evaluate $\iint_{S}(2 y \hat{\imath}+y z \hat{\jmath}+2 \mathrm{xz} \hat{k}) . \mathrm{d} \bar{s}$ over the surface of region bounded by $\mathrm{y}=0, \mathrm{y}=3, \mathrm{x}=0, \mathrm{z}=0, \mathrm{x}+2 \mathrm{z}=6$.

OR

Q6) a) Using Green's Lemma, evaluate $\int_{c} \bar{F}$. $\mathrm{d} \bar{r}$ where $\bar{F}=3 \mathrm{y} \hat{\imath}+2 \mathrm{x} \hat{\jmath}$ and c is boundary of region bounded by $\mathrm{y}=0, \mathrm{y}=\sin \mathrm{x}$ for $0 \leq \mathrm{x} \leq \Pi$
b) Evaluate

$$
\begin{equation*}
\iint_{S}\left(z^{2}-x\right) d y d z-x y d x d z+3 z d x d y \tag{5}
\end{equation*}
$$

where s is closed surface of region bounded by $x=0, x=3, z=0, z=4-y^{2}$
c) Show that $\bar{E}=-\nabla \emptyset-1 / \mathrm{c} \frac{\partial \bar{A}}{\partial t} ; \bar{H}=\nabla \times \bar{A}$ are solutions of Maxwell's equations
i) $\nabla \cdot \bar{H}=0$ ii) $\nabla \times \bar{H}=1 / \mathrm{c} \frac{\partial \bar{E}}{\partial t}$ if $\nabla \cdot \bar{A}+1 / \mathrm{c} \frac{\partial \phi}{\partial t}$

$$
\begin{equation*}
\text { and } \nabla^{2} \bar{A}=1 / \mathrm{c}^{2} \frac{\partial^{2} A}{\partial t^{2}} \tag{5}
\end{equation*}
$$

Q7)
a) Show that the analytic function with constant amplitude is constant.
b) By using Cauchy's integral formula, evaluate $\oint_{c} 2 z^{2}+z / z^{2}-1 \mathrm{dz}$ Where c is the circle $|\mathrm{z}-1|=1$
c) Find the bilinear transformation which maps the points $z=-1,0,1$ on the points $\mathrm{W}=0, \mathrm{i}, 3 \mathrm{i}$ of w-plane.

OR

Q8) a) If $u=\cos h x$ cosy then find the harmonic conjugate v such that $f(z)=$ $u+i v$ is analytical function.
b) Evaluate
$\int_{c} \frac{12 z-7}{(z-1)^{2}(2 z+3)} \mathrm{dz}$ where c is the circle $|\mathrm{z}|=2$ using Cauchy's residue theorem.
c) Show that the transformation $\mathrm{w}=\mathrm{z}+1 / \mathrm{z}-2 \mathrm{i}$ maps the circle $|\mathrm{z}|=2$ into an ellipse.

