Total No. of Questions-8]
[Total No. of Printed Pages-5
Seat
No.
[5252]-140

S.E. (Electronics/E\&TC) (Second Semester)

EXAMINATION, 2017

ENGINEERING MATHEMATICS-III

(2012 PATTERN)

Time : Two Hours

Maximum Marks : 50
N.B. :- (i) Attempt Q. 1 or 2, Q. 3 or 4, Q. 5 or 6, Q. 7 or 8.
(ii) Neat diagram must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of non-programmable pocket calculator (electronic is allowed).
(v) Assume suitable data, if necessary.

1. (a) Solve any two :
(i) $\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) y=2 \cos x+3 x+2$
(ii) $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$ (by method of variation of parameter)
(iii) $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{2}+2 \log x$.
(b) Find Fourier cosine transform of $f(x)=\left\{\begin{array}{lc}x, & 0 \leq x \leq a \\ 0, & x>a\end{array}\right.$
P.T.O.

Or

2. (a) An electric circuit consists of an inductance 0.1 henry, a resistance (R) of 20Ω and a condenser of capacitance (C) of 25 microfarads. If the differential equation of electric circuit is $\mathrm{L} \frac{d^{2} q}{d t^{2}}+\mathrm{R} \frac{d q}{d t}+\frac{q}{\mathrm{C}}=0$, then find the charge ' q ' and current ' i ' at any time t, given that at $t=0, q=0.05$ coulombs. $i=\frac{d q}{d t}=0$ when $t=0$.
(b) Solve (any one) :
(i) Find z-transfrom of $f(k)=2^{k} \cos (3 k+2)$.
(ii) Find inverse z-transform of $\frac{1}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{3}\right)}$ for $\frac{1}{3}<|z|<\frac{1}{2}$.
(c) Solve :

$$
f(k+1)+\frac{1}{2} f(k)=\left(\frac{1}{2}\right)^{k}, \quad k \geq 0, f(0)=0
$$

3. (a) Solve the equation $\frac{d y}{d x}=\sqrt{x+y}$ using fourth order Runge-Kutta method given $y(0)=1$ to find y at $x=0.2$ taking $h=0.2$.
(b) Find Lagrange's interpolating polynomial passing through set of points :

$$
\begin{array}{llll}
x & 0 & 1 & 2 \\
y & 2 & 1 & 4 \tag{4}
\end{array}
$$

Hence find y at $x=0.5$ and $\frac{d y}{d x}$ at $x=2$.
(c) Find the directional derivative of $\phi=4 x z^{3}-3 x^{2} y^{2} z$ at $(2,-1,2)$ in the direction of $2 \bar{i}-3 \bar{j}+6 \bar{k}$.

> Or
4. (a) Show that (any one) :
(i) For scalar functions $\phi \& \psi$, show that :

$$
\nabla .(\phi \nabla \psi-\psi \nabla \phi)=\phi \nabla^{2} \psi-\psi \nabla^{2} \phi
$$

(ii) $\quad \nabla \cdot\left(r \nabla \frac{1}{r^{3}}\right)=\frac{3}{r^{4}}$
(b) Show that the vector field $\overline{\mathrm{F}}=\left(y^{2} \cos x+z^{2}\right) \bar{i}+2 y \sin x \bar{j}$ $+2 x z \bar{k}$ is irrotational. Find scalar ϕ such that $\overline{\mathrm{F}}=\nabla \phi$. [4]
(c) Evaluate $\int_{0}^{\pi / 2} \frac{\sin x}{x} d x$ by using Simpson's $\left(\frac{1}{3}\right)^{r d}$ rule by dividing the interval into four parts. Considering the values upto four decimals.
5. (a) Evaluate $\int_{c} \overline{\mathrm{~F}} . d \bar{r}$ for $\overline{\mathrm{F}}=\left(5 x y-6 x^{2}\right) \bar{i}+(2 y-4 x) \bar{j}$ along the curve $c: y=x^{3}$ in XOY plane from $(1,1)$ to $(2,8)$.
(b) Use divergence theorem to evaluate :

$$
\iint_{s}\left(y^{2} z^{2} \bar{i}+z^{2} x^{2} \bar{j}+x^{2} y^{2} \bar{k}\right) \cdot d \overline{\mathrm{~S}}
$$

where S is the upper part of the sphere $x^{2}+y^{2}+z^{2}=9$ above XOY plane.
(c) Using Green's theorem, show that the area bounded by a simple closed curve C is given by :

$$
\frac{1}{2} \int_{c}(x d y-y d x)
$$

Hence find area of the ellipse

$$
\begin{align*}
x= & a \cos \theta, y=b \sin \theta \tag{4}\\
& \text { Or }
\end{align*}
$$

6. (a) Find the work done in moving a particle from $\mathrm{A}(1,0,1)$ to $B(2,1,2)$ along the straight line $A B$ in the force field $\overline{\mathrm{F}}=x^{2} \bar{i}+(x-y) \bar{j}+(y+z) \bar{k}$.
(b) Evaluate :

$$
\iint_{s}(\nabla \times \overline{\mathrm{F}}) \cdot d \overline{\mathrm{~S}}
$$

for the vector field $\mathrm{F}=4 y \bar{i}-4 x \bar{j}+3 \bar{k}$ where S is a disc of radius 1 lying on the plane $z=1$.
(c) Prove that :

$$
\iint_{s}(\phi \nabla \psi-\psi \nabla \phi) \cdot d \overline{\mathbf{S}}=\iiint_{\mathrm{V}}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d \mathrm{~V}
$$

where S is any closed surface enclosing volume V .
7. (a) If $f(z)=u+i v$ is an analytic function with $u=\cosh x$ $\cos y$, express $f(z)$ in terms of z.
(b) Evaluate :

$$
\oint_{c} \frac{2 z^{2}+z+5}{\left(z-\frac{3}{2}\right)^{2}} d z
$$

where C is $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
(c) Find the bilinear transformation which maps the points $0,-i,-1$ from z-plane into the points $i, 1,0$ of the w-plane. [5] Or
8. (a) If $f(z)=u+i v=f\left(r e^{i \theta}\right)$ is analytic, show that u satisfies the Laplace equation $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$.
(b) Evaluate $\oint_{c} \frac{e^{2 z}}{z(z-1)^{2}} d z$ over $c:|z|=3$.
(c) Show that the bilinear transformation $w=\frac{2 z+3}{z-4}$ maps the circle $x^{2}+y^{2}-4 x=0$ into the line $4 u+3=0$. [5]

