Total No. of Questions-8]
[Total No. of Printed Pages-7

Seat No.	

[4757]-1031

S.E. (Electrical/Instru.) (First Semester)

EXAMINATION, 2015

ENGINEERING MATHEMATICS-III

(2012 PATTERN)

Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of non-programable electronic pocket calculator and steam tables is allowed.
(v) Assume suitable data, if necessary.

1. (a) Solve any two :
(i) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{e^{x}}$
(ii) $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=\cos (\log x)+x \sin (\log x)$
(iii) $\left(\mathrm{D}^{2}+4\right) y=\sec 2 x$ by variation of parameters method.
(b) Find Laplace-transform of $\frac{1-\cos t}{t}$.

Or

2. (a) The charge Q on the plate of condenser satisfies the equation :

$$
\frac{d^{2} \mathrm{Q}}{d t^{2}}+\frac{\mathrm{Q}}{\mathrm{LC}}=\frac{\mathrm{E}}{\mathrm{~L}} \sin \frac{t}{\sqrt{\mathrm{LC}}}
$$

Prove that the charge at any time t is given by

$$
\mathrm{Q}=\frac{\mathrm{EC}}{2}[\sin \omega t-\omega t \cos \omega t]
$$

where $\omega=\frac{1}{\sqrt{\mathrm{LC}}}$ and $\mathrm{Q}=0$ at $t=0$.
(b) Solve (any one) :
(i) $\mathrm{L}\left[t \cup(t-4)-t^{3} \delta(t-2)\right]$
(ii) $\mathrm{L}^{-1}\left[\frac{1}{s^{2}(s+1)^{2}}\right]$ by convolution theorem.
(c) Solve by Laplace-transform method :

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=e^{-t} \sin t
$$

with $y(0)=0$ and $y^{\prime}(0)=1$.
3. (a) Find inverse Fourier sine transform of :

$$
\begin{equation*}
\mathrm{F}_{s}(\lambda)=\frac{1}{\lambda} e^{-a \lambda}, \lambda>0 \tag{4}
\end{equation*}
$$

(b) Find inverse z-transform of :

$$
\begin{equation*}
\mathrm{F}(z)=\frac{z^{2}}{(z-1)\left(z-\frac{1}{2}\right)^{2}},|z|>\frac{1}{2} \tag{4}
\end{equation*}
$$

(c) Find directional derivatives of

$$
\phi=e^{2 x-y-z}
$$

at (1, 1, 1) in the direction of tangent to curve

$$
x=e^{-t}, y=2 \sin t+1, z=t-\cos t
$$

$$
\begin{equation*}
\text { at } t=0 \tag{4}
\end{equation*}
$$

Or

4. (a) Prove the following (any one) :
[4]
(i) $\quad \nabla \cdot\left[r \nabla\left(\frac{1}{r^{4}}\right)\right]=\frac{8}{r^{5}}$
(ii) $\nabla \cdot\left(\frac{\bar{a} \times \bar{r}}{r}\right)=0$.
(b) Show that vector field

$$
\begin{equation*}
\overline{\mathrm{F}}=\left(6 x y+z^{3}\right) \bar{i}+\left(3 x^{2}-z\right) \bar{j}+\left(3 x z^{2}-y\right) \bar{k} \tag{4}
\end{equation*}
$$

is irrotational. Find scalar function ϕ such that :

$$
\overline{\mathrm{F}}=\nabla \phi
$$

(c) Solve the difference equation :

$$
\begin{gathered}
f(k+2)+3 f(k+1)+2 f(k)=0, \\
f(0)=0, f(1)=1 .
\end{gathered}
$$

5. (a) Evaluate :

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

where

$$
\overline{\mathrm{F}}=z i+x j+y k
$$

and C is the arc of the curve $x=\cos t, y=\sin t$,

$$
\begin{equation*}
z=t \text { from } t=0 \text { to } t=2 \pi . \tag{4}
\end{equation*}
$$

(b) Evaluate :

$$
\iint_{\mathrm{S}} \nabla \times \overline{\mathrm{F}} \cdot d \bar{s}
$$

for vector field

$$
\overline{\mathrm{F}}=4 y i-4 x j+3 k
$$

where s is a disc of radius 1 lying on the plane $z=1$ and C is its boundary.
(c) Evaluate :

$$
\iint_{\mathrm{S}}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)
$$

where S is the closed surface consisting of the circular cylinder

$$
\begin{align*}
& \quad x^{2}+y^{2}=a^{2}, \\
& z=0 \text { and } z=b . \tag{5}
\end{align*}
$$

Or

6. (a) Using Green's theorem, evaluate

$$
\int_{\mathrm{C}}\left(\frac{1}{y} d x+\frac{1}{x} d y\right)
$$

where C is the boundary of the region bounded by the parabola $y=\sqrt{x}$ and the lines $x=1, x=4$.
(b) Evaluate :

$$
\iint_{\mathrm{S}} \overline{\mathrm{~F}} \cdot d \bar{s}
$$

using Gauss divergence theorem where

$$
\overline{\mathrm{F}}=2 x y i+y z^{2} j+x z k
$$

and s is the region bounded by

$$
\begin{equation*}
x=0, y=0, z=0, y=3, x+2 z=6 . \tag{5}
\end{equation*}
$$

(c) Evaluate :

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

by Stokes' theorem, where

$$
\overline{\mathrm{F}}=y^{2} i+x^{2} j-(x+z) k
$$

and C is the boundary of the triangle with vertices at $(0,0,0),(1,0,0)$ and $(1,1,0)$.
7. (a) If $\phi+i \psi$ is complex potential for an electric field and

$$
\phi=-2 x y+\frac{x}{x^{2}+y^{2}},
$$

find function ψ.
(b) Evaluate :

$$
\oint_{\mathrm{C}} \frac{z+4}{(z+1)^{2}(z+2)^{2}} d z
$$

where ' C ' is a circle $|z+1|=\frac{1}{2}$.
(c) Find the bilinear transformation which maps points $1,0, i$ of z-plane onto the points $\infty,-2,-\frac{1}{2}(1+i)$ of w-plane. [4]

Or

8. (a) Show that analytic function with constant amplitude is constant.
(b) Evaluate :

$$
\int_{2+4 i}^{5-5 i}(z+1) d z
$$

along the line joining the points $2+4 i$ and $5-5 i$.
(c) Find the image of Hyperbola :

$$
x^{2}-y^{2}=1
$$

under the transformation $w=\frac{1}{z}$.

