No.
[5252]-141
S.E. (Electrical/ Instrumentation) (First Semester)

EXAMINATION, 2017

ENGINEERING MATHEMATICS-III
 (2012 PATTERN)

Time : Two Hours

Maximum Marks : 50
N.B. :- (i) Attempt Q. 1 or 2, Q. 3 or 4, Q. 5 or 6, Q. 7 or 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of non-programmable electronic pocket calculator is allowed.
(v) Assume suitable data, if necessary.

1. (a) Solve any two :
(i) $\frac{d^{2} y}{d x^{2}}+y=\sin 3 x \cos 2 x$
(ii) $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}+(2 x+3) \frac{d y}{d x}-2 y=24 x^{2}$
(iii) $\frac{d^{2} y}{d x^{2}}+9 y=\frac{1}{1+\sin 3 x}$ (Use method of variation of parameters)
(b) Solve the differential equation by using Laplace transfrom method : $\frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}=8 \cos t$ given $y(\pi)=-1, y^{\prime}(0)=-1$. [4] P.T.O.

Or

2. (a) An inductor of 0.5 henry is connected in series with resistor of 6 ohms, a capacitor of 0.02 farad. A generator having alternative voltage of $24 \sin 10 t$. Find q at any time t if $q=0, \mathrm{I}=0$ at $t=0$.
(b) Solve any one of the following :
(i) Find the Laplace transform of $f(t)=\frac{1-e^{-b t}}{t}$
(ii) Find the inverse Laplace transform of

$$
\begin{equation*}
\mathrm{F}(\mathrm{~S})=\frac{1}{\mathrm{~S}} \log \left(1+\frac{1}{\mathrm{~S}^{2}}\right) \tag{4}
\end{equation*}
$$

(c) Using unit step function find the Laplace transform of the function $f(t)=\mathrm{K}(n-1)$ for $(n-1) \mathrm{T}<t<n \mathrm{~T}, n=1$, $2,3 \ldots$ where T is period.
3. (a) Represent the function in the Fourier integral form for $f(x)=e^{-|x|} ;-\infty<x<\infty$
(b) Find $z^{-1}\left\{\frac{z^{2}}{z^{2}+1}\right\}$, by using inversion integral method. [4]
(c) Find the directional derivative of $\phi=e^{2 x} \cos y z$ at ($0,0,0$) in the direction of tangent to the curve $x=a \sin t, y=a \cos t$, $z=$ at at $t=\pi / 4$.

Or
4. (a) Prove the following (any one) :
(i) $\quad \nabla^{4}\left(r^{2} \log r\right)=\frac{6}{r^{2}}$
(ii) $\quad \nabla .\left(r \nabla \frac{1}{r^{5}}\right)=\frac{15}{r^{6}}$.
(b) Shor that $\overrightarrow{\mathrm{F}}=\frac{1}{r}\left[r^{2} \vec{a}+(\vec{a} . \vec{r}) \vec{r}\right]$ is irrotational. Hence find scalar potential function ϕ.
(c) Solve the difference equation :
$y_{k}-\frac{5}{6} y_{k-1}+\frac{1}{6} y_{k-2}=\left(\frac{1}{2}\right)^{k} ; k \geq 0$
5. (a) Using Green's theorem, evaluate $\int_{c}[\cos y \bar{i}+x(1-\sin y) \bar{j}] . d \bar{r}$ where c is the closed curve $x^{2}+y^{2}=1, z=0$.
(b) Evaluate $\iint_{\mathrm{S}}(\nabla \times \overline{\mathrm{F}}) . \hat{n} d s$ for $\overline{\mathrm{F}}=x^{2} \bar{i}+y^{2} z \bar{j}+x y \bar{k}$ for the plane surface S bounded by $x=0, y=0, x=2, y=2, z=0$.
(c) Evaluate : $\iint_{s}[3 x d y d z-2 y d z d x+2 z d x d y]$ over the surface of sphere of radius a.

Or
6. (a) Find the work done by $\overline{\mathrm{F}}=x^{2} \bar{i}+y z \bar{j}+z \bar{k}$ in moving a particle along the straight line segment from $(1,2,2)$ to $(3,4,4)$. [4]
(b) Evaluate $\iint_{\mathrm{S}} \overline{\mathrm{F}} . \hat{n} d \mathrm{~S}$ where $\overline{\mathrm{F}}=x^{3} \bar{i}+y^{3} \bar{j}+z^{3} \bar{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
(c) Evaluate $\iint_{\mathrm{S}}(\nabla \times \overline{\mathrm{F}}) \cdot d \overline{\mathrm{~S}}$ for $\overline{\mathrm{F}}=y \bar{i}+z \bar{j}+x \bar{k}$, where S is the surface of paraboloid $z=1-x^{2}-y^{2}, z \geq 0$.
7. (a) If $f(z)$ is analytic function, then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
(b) Find the bilinear transformation, which maps the points $1, i$, -1 from Z-plane onto the points $i, 0,-i$ of the w-plane.
(c) Evaluate $\oint_{c} \frac{e^{2 z}}{(z+1)^{4}} d z$ where c is the circle $|z|=3$. [4] Or
8. (a) If $u=x^{4}-6 x^{2} y^{2}+y^{4}$, find its harmonic conjugate v, find $f(z)=u+i v$ in terms of z.
(b) Find the map of straight line $y=x$ under the transformation

$$
\begin{equation*}
w=\frac{z-1}{z+1} \tag{4}
\end{equation*}
$$

(c) Evaluate $\oint_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where c is the circle $|z|=3$.

