Seat No.

[5152]-163

S.E. (Computer Engineering)

(First Semester) EXAMINATION, 2017 DIGITAL ELECTRONICS AND LOGIC DESIGN

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 Or Q. No. 2, Q. No.3 Or Q. No. 4, Q. No. 5 Or Q. No. 6, Q. No. 7 Or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
- 1. (a) Do the required conversions for the following numbers. [6]
 - $(i) \quad (310.56)_{10} = ()_2$
 - (ii) $(5462)_8 = ()_{16}$
 - (iii) $(6516)_{10} = ()_{16}$
 - (b) Define the following terms for TTL family: [2]
 - (i) Power dissipation
 - (ii) Speed of Operation.
 - (c) Explain two input CMOS NOR gate with neat diagram. [4] Or
- **2.** (a) Minimize the following functions using K-map and realize using logic gates.

$$F(A,B,C,D) = \sum m (1, 5, 7, 9, 11)$$
 [4]

(b) Perform the following operation using 2's complement method $(35)_{10} - (18)_{10} = (?)$. [2]

P.T.O.

(0	Explain the working of three input TTL NAND gate with Totem
	pole output. [6]
3. ((a) Implement the following function using 4: 1 multiplexer
	$F(A,B,C,D) = \sum_{m} m (1, 3, 7, 9, 11, 14, 15)$ [4]
(1	Convert the following Gray code numbers to Binary: [2]
	$(i) \qquad (101101)_2$
	(ii) $(1111111)_2$
(0	What are the applications of FLIP- FLOPS? Explain the working
	of JK Flip-Flop. [6]
	Or
4. (Design four bit binary to gray code converter. Use logic gates
	as per your design and requirement. [6]
(1	Design MOD 78 counter by using IC 7490 [6]
5. (a	what is VHDL ? Explain different modelling styles of VHDL
	with suitable example. [7]
(1	What is ASM chart? Explain components of ASM chart. What
	are applications of ASM chart in digital system design?
	[6]
	Or
6. (a)	Draw an ASM chart and state table for 3-bit Up counter having
	control input E: [7]
	(i) If control input $E = 0$: Counter remains in same state.
	(ii) If control input $E = 1$: Counter goes to next state.
(1	b) What is difference between signal and variable in VHDL?
	Explain with an example. [6]
7. (a) Draw and explain the basic architecture of FPGA. [6]
[5152]-3	.63 2

(b) A combinational circuits is defined by the functions: [7]

F1 (A,B,C) =
$$\sum m$$
 (0, 2, 5, 7)

F2 (A,B,C) =
$$\sum m$$
 (0, 1, 6, 7)

Implement this circuit with PLA.

Or

- **8.** (a) What is PLA? Explain input buffer, AND and OR matrix in PLA. [7]
 - (b) What is CPLD? Give the difference between CPLD and FPGA.

 [6]