Total No. of Questions: 8]		of Questions : 8] SEAT No. :
P10	20	[Total No. of Pages : 2
		[4457]-213
		S.E. (Computer Engineering) (Semester - I)
		DIGITAL ELECTRONICS AND LOGIC DESIGN
		(2012 Course)
Time	, .) L	Tours] [Max. Marks :50
Insti		ons to the candidates:
	1)	Attempt Q.No.1 or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q.No.6 and Q.No.7 or Q.No.8.
	2)	Figures to the right indicate full marks.
	3)	Assume suitable data, if necessary.
Q1)	a)	Minimize the following function using K-map & realize using Logic gates.
		$F(A,B,C,D) = \sum m(1,3,7,11,15) + d(0,2,5).$ [4]
	b)	Convert following: [2]
	`	$(255)_{10} = (?)_{16}$
	c)	Differentiate between standard TTL and CMOS logic circuit w.r.t. [6]
		i) Propagation delayii) FANOUTiii) Figure of merit
		OR
<i>Q2)</i>	a)	Convert the following numbers into binary and hexadecimal numbers.[4]
		i) $(46)_{8}$ ii) $(20.5)_{10}$
	b)	Define the following terms and mention its standard values for TTL
		family. [6]
		i) Voltage and Current parameter.
		ii) Power Dissipation.
		iii) Noise margin.
	c)	Represent the following signed number in 2's complement method: [2]
		i) +8 ii) -8
Q3)	a)	Design a 4-bit BCD to Excess-3 code converter circuit using minimum
		number of logic gates. [6]
	b)	Design Mod-5 synchronous counter using JK FFs. [4]

P.T.O.

[2]

c) Draw the excitation table of S-R Flip-flop.

Q4)	a)	Design a 3-bit binary to 3-bit gray code converter using IC-74138.	[4]
	b)	How many Flip-flops are required to build a binary counter circuit count from 0 to 2048. What is the frequency of the output of last Flip for an input clock frequency of 6MHz?	
	c)	Perform the following: $(1111)_2 + (1111)_2 = ?$	[2]
Q5)	a)	State and explain basic component of ASM chart? What is different between ASM chart and conventional flow chart?	nce [7]
	b)	Write VHDL code 8:1 Multiplexer using Behavioral and Datafl modeling style.	ow [6]
		OR	
Q6)	a)	Design a sequence generator circuit to generate the sequence 1-3-using Multiplexer Controller based ASM approach. Consideration:	5-7 [7]
		i) If control input $C = 0$, the sequence generator circuit in the satisfactor.	me
		ii) If control input $C = 1$, the sequence generator circuit goes into n state.	ext
	b)	Explain the following statements used in VHDL with suitable examples i) Process.	:[6]
		ii) CASE.iii) With-Select-When.	
Q7)	a) b)	What are different types of PLDs? Design 3:8 decoder using PLD. Draw and explain the basic architecture of FPGA. OR	[7] [6]
Q8)	a)		[7]
20)	a)	$F_1(A,B,C) = \sum m(0,1,2,4)$	[/]
		$F_{1}(A,B,C) = \sum m(1,3,5,6)$	
		Implement this circuit with PLA.	
	b)		[6]
	U)	$F_1(A,B,C) = \sum m(0,1,3,4)$	լսյ
		Implement this circuit with PAL.	
		214 214 214	

[4457]-213