Seat No.

[4857]-1073

S.E. (Computer Engineering) (First Semester) EXAMINATION, 2015

DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
- 1. (a) Implement each expression with NAND logic: [4]
 - (i) ABC + DE
 - (ii) ABC + D' + E'.
 - (b) Convert the decimal number 650 to hexadecimal by repeated division by 16. [2]
 - (c) Draw three input standard TTL NAND gate circuit and explain its operation. [6]

Or

(a) Using K-map convert the following standard POS expression into a minimum POS expression, a standard SOP expression and minimum SOP expression:
(A' + B' + C + D) (A + B' + C + D) (A + B + C + D')
(A + B + C' + D') (A' + B + C + D') (A + B + C' + D).

P.T.O.

(<i>b</i>)	Prove the following rules of Boolean algebra: [2]
	$(i) \mathbf{A} + \mathbf{A}' \mathbf{B} = \mathbf{A} + \mathbf{B}$
	(ii) $(A + B) (A + C) = A + BC.$
(c)	Explain the advantages of open collector output. [4]
(a)	Design a synchronous counter for
	$4 - > 6 - > 7 - > 3 - > 1 - > 4 \dots$
	Avoid lockout condition. Use JK flip-flop for design. [6]
(<i>b</i>)	What are the full adder's inputs that will produce each of
	the following outputs ? [2]
	(i) $\Sigma = 0$, $C_{out} = 0$
	(ii) $\Sigma = 1$, $C_{out} = 0$
	(iii) $\Sigma = 1$, $C_{out} = 1$
	(iv) $\Sigma = 0$, $C_{\text{out}} = 1$.
(c)	Explain the logic required to convert 6-bit binary number to
	gray code. Use that logic to convert the following binary numbers
	to gray code: [4]
	(i) 101010
	(ii) 111111
	(iii) 000111
	(iv) 111000.

Or

4. (a) Design a SEQUENCE DETECTOR using JK Flip-Flop to detect the following sequence. 1001 Use state table diagram, state transition table and K-map as design tools. Remove all redundant states and draw the final circuit diagram. [6]

[4857]-1073

3.

- (b) Determine the output for the following input states : [2] $D_0 = 0, D_1 = 1, D_2 = 1, D_3 = 0, s_0 = 1, s_1 = 0.$ Use 4:1 MUX.
- (c) Add the following BCD numbers: [4]
 - (i) 1000 + 0110
 - (ii) 0111 + 0101
 - (iii) 0111 + 0010
 - (iv) 1000 + 0001.
- **5.** (a) What is ASM chart? Give its application and explain the MUX controller method with the suitable example. [6]
 - (b) What is VHDL? Write a VHDL code for 3:8 decoder using behavioral modeling style. [7]

Or

- **6.** (a) Explain different modeling styles used in VHDL language with example. [6]
 - (b) Draw an ASM chart for the 2-bit counter with the following specifications:
 - (i) It will count UP if X = 1
 - (ii) It will maintain the state if X = 0
 - (iii) Produces output = 1.

If the counter bits are equal unconditionally, otherwise output = 0 unconditionally. X is an external input. [7]

[4857]-1073 3 P.T.O.

- 7. (a) Show how PAL is programmed for the following 3 variable logic function: [6]
 - $(i) \quad X = AB'C + A'BC' + A'B' + AC$
 - (ii) Y = A'B'C + AB'C' + A + AB.
 - (b) What is FPGA? Explain in detail the architecture of FPGA.

Or

- 8. (a) What is the difference between PAL and PLA with suitable example? [6]
 - (b) Design a BCD to Excess-3 code converter and implement using suitable PLA. [7]