Seat No.

[5057]-253

S.E. (Computer Engineering) (First Semester) EXAMINATION, 2016

DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
- 1. (a) Do the required conversions for the following numbers: [6]
 - (i) $(205.76)_{10} = ()_2$
 - (ii) $(7A2B)_{16} = ()_{8}$
 - (iii) $(6516)_{10} = ()_{16}$
 - (b) Define the following terms for TTL family: [2]
 - (i) Fan Out
 - (ii) Speed of Operation.
 - (c) Explain the operation of CMOS NOR gate. [4]

Or

2. (a) Minimize the following functions using K-map and realize using logic gates: [4]

 $F(A, B, C, D) = \Sigma m(0, 2, 8, 10, 14).$

P.T.O.

	(<i>b</i>)	Perform the following operation using 2's complement method:
		$(27)_{10} - (14)_{10} = (?).$
	(c)	Explain the working of three input TTL NAND gate with Totem-
		pole output. [6]
3.	(a)	Implement the following function using 4 : 1 multiplexer : [4] $F(A, B, C, D) = \Sigma m(0, 3, 7, 9, 11, 14, 15)$.
	(<i>b</i>)	Convert the following Gray code numbers to Binary : [2] (i) $(101101)_2$
		(ii) $(111111)_2$
	(c)	What are the applications of Flip-Flops? Explain the working
		of SR Flip-Flop. [6]
		Or
4.	(a)	Explain with suitable equations and diagrams concept of look
		ahead carry Generator for 4-bit adder circuit. [6]
	(<i>b</i>)	Design MOD 76 counter by using IC 7490. [6]
5.	(a)	Explain the following modelling styles of VHDL with suitable example: [6]
		(i) Behaviour modelling style
		(ii) Data flow modelling style.
	<i>(b)</i>	What is ASM chart? Explain components of ASM chart. What
[5057	7]-253	are applications of ASM chart in digital system design ? [7]

www.manaresults.co.in

- 6. (a) Draw an ASM chart and state table for 3-bit Up counter having control input E: [7]
 - (i) If control input E = 0: Counter remains in same state
 - (ii) If control input E = 1: Counter goes to next state.
 - (b) What is VHDL? Explain entity and architecture declaration in VHDL with suitable example. [6]
- 7. (a) Draw and explain the basic architecture of FPGA. [6]
 - (b) A combinational circuits is defined by the functions: [7]

$$F_1(A, B, C) = \Sigma m(0, 2, 5, 7)$$

$$F_2(A, B, C) = \Sigma m(0, 1, 6, 7)$$

Implement this circuit with PLA.

Or

- **8.** (a) Comparison between PROM, PLA and PAL. [7]
 - (b) What is CPLD? Give the difference between CPLD and FPGA.

[5057]-253