Total No. of Questions : 10]		SEAT No:
P3862	[5058]-301	[Total No. of Pages : 2
	T.E. (Civil)	
HVDDOI OCVAND	WATED DESCHID	CESENCINEEDING

HYDROLOGY AND WATER RESOURCES ENGINEERING (2012 Pattern) (Semester - I) (End - Semester)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q4, Q.5 or Q6, Q.7 ro Q.8, Q.9 or Q10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.
- **Q1)** a) Explain with a neat sketch hydrological cycle.
 - b) Explain construction and application of DAD Curves with sketch. [7]

OR

Q2) a) The isohyet drawn for a storm which occurred over a drainage basin of area 950 km² yielded the following information. Calculate the average depth of rainfall over a basin.

Isohyet interval in mm	85-75	75-65	65-55	55-45	45-35
Area between isohyets in Km ²	125	236	264	175	150

- b) State principal Indian crops and explain importance of crop rotation .[4]
- Q3) a) Differentiate between furrow irrigation and drip irrigation. [5]
 - b) Explain Ultrasonic method to measure stream discharge. [5]

OR

- **Q4)** a) A well of 0.5m diameter penetrates fully into a confined aquifer of thickness 20 m and hydraulic conductivity 8.2*10⁻⁴ m/s. What is the maximum yield expected from this well if the drawdown in the well is not to exceed 3 m. The radius of influence may be taken as 260m. [7]
 - b) Explain construction of open well with neat sketch. [3]

P.T.O.

[3]

Q5) a) State various factors affecting runoff and explain in detail. [14]

b) Explain any one method of base flow separation.

[4]

OR

Q6) a) Given below are the observed flows (cumecs) from a storm of 6 hour duration on a stream with a drainage area of 316 sq.km. Assume a constant base flow of 17 cumecs, derive a 6 hour duration unit hydrograph. [9]

Time (hr)	0	6	12	18	24	30	36
Flow	17	113.2	254.5	198	150	113.2	87.7
Time (hr)	42	48	54	60	66	72	Base Flow=17
Flow	67.9	53.8	42.5	31.1	22.64	17	

b) Explain synthetic hydrograph with neat sketch.

[9]

- **Q7)** a) Explain flow mass curve and explain the step by step procedure to calculate the reservoir capacity and surplus water. [8]
 - b) What is apportionment of total cost for multipurpose reservoir. Explain equal apportionment method and alternative justifiable expenditure method.

[8]

OR

- Q8) a) Draw a section of dam indicating details of sedimentation. Explain significance of trap efficiency.[8]
 - b) What method you will suggest to control evaporation loss and loss due to seepage. [8]
- **Q9)** a) Explain participatory irrigation management.

[8]

b) Wrtie a note on Warabandi.

[8]

OR

- Q10)a) What are the ill effects of water logging and how will you control it. [9]
 - b) Draw a neat section of lift irrigation scheme and state the authorities from whom permission for implementing it is necessary. [7]

 $\Leftrightarrow \quad \Leftrightarrow \quad \Leftrightarrow$