\square

Time: $21 / 2$ Hours]

[Max. Marks : 70
Instructions to the candidates:

1) Answer questions Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8.
2) Figures to the right side indicate full marks.
3) If necessary, assume suitable data \& indicate clearly.
4) Use of electronic pocket calculator is allowed.

Q1) a) Analyse the beam by slope deflection method. Draw BMD \& SFD. Take EI=3900 kN-m².

b) Analyse the continuous beam shown in figure below using the Flexibility method \& draw the bending moment diagram.

OR
Q2) a) Analyse the frame by slope deflection method. Draw BMD.

P.T.O.
b) Analyse the continuous beam shown in figure below by method of moment distribution.

Q3) Find the end moments of the beams as shown in figure by stiffness matrix method. Draw SFD \& BMD.
Take EI $=3800 \mathrm{kNm}^{2}$

OR
Q4) Analyse the frame by matrix stiffness method \& sketch the bending moment diagram.

Q5) a) Analyse the frame shown in figure below by portal method.

b) A simply supported beam of length 7 m is loaded as shown in figure. Determine the maximum deflection.

OR
Q6) a) Analyse the frame as shown in figure Q. 5 (a) by cantilever method.[10]
b) A cantilever beam loaded with udl of $30 \mathrm{kN} / \mathrm{m}$, find the maximum deflection span of the beam is 2 m

Q7) a) Explain
i) Nodes
ii) CST
iii) LST
iv) QST
b) Explain shape function for Quadratic rectangular element.

OR
Q8) a) Differentiation between Axisymmetric \& Iso parametric elements. [8]
b) Explain rectangular elements.

0

