Total No. of Questions: 6]

P	4	9	7	0

SEAT No.:	

[Total No. of Pages :3

TE/In Sem. - 105 T.E. (Civil)

FLUID MECHANICS - II

(2012 Pattern) (Semester - I) (301005)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.No.1 or 2, 3 or 4, 5 or 6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) With necessary sketch explain the variation in pressure distribution with Reynold number for flow around cylinder. State also the application of this distribution. [4]
 - b) A body has a length of 3.5m & projected area 2.8m² normal to direction of its motion. The body moves through water medium having dynamic viscosity of 0.01 poise. Find the drag on the body if it has a coefficient of drag of 0.20 for a Reynold number of 5×10⁶. [3]
 - c) Explain induced drag & profile drag & what factors influence it? [3]

OR

- **Q2)** a) Explain why water hammer occur in pipe flow? What are its effect & methods of reduce water hammer effect. [4]
 - b) In a steel pipe 1200m long & 1.0m in diameter, carries water at a rate of 3m³/s. If the wall thickness is 12mm, find the rise of pressure due to water hammer, if the valve at the end of pipe is closed in [4]
 - i) 2 sec
 - ii) 10 sec

Take modulus of elasticity of steel 2.06×10^{11} N/m² & bulk modulus of elasticity of water 2.01×10^9 N/m².

c) What is meant by unsteady flow, give examples.

[2]

P.T.O.

Q3) a)	Explain energy equation as applied to flow through open channel	l with
	necessary sketch.	[3]

- b) What is kinetic energy & momentum correction factor & derive the expression for both. [4]
- c) Work out the
 - i) Area of flow
 - ii) Wetted perimeter & hydraulic radius for
 - 1) Triangular channel with sideslope 1V: 2H, depth of flow $1.5m \left[\frac{1}{2} \right]$.
 - 2) Trapezoidal channel of base width 10m, slide slope 2V to 3.5horizontal, depth of flow 1.5m. [3]

OR

- i) specific energy &
- ii) specific force?

Prove that critical flow occurring at minimum specific force is given by $\frac{Q^2}{\sigma} = \frac{A^3}{T}.$

- b) A rectangular channel is 2.5m wide & 1.2m deep. The channel is laid to slope of $\lim 3600$ & has Manning N = 0.015. Calculate. [4]
 - i) Maximum height of hump to produce critical depth &
 - ii) Reduction in width to produce critical depth.
- c) What is channel transition & its necessity? List out different types of channel transition. [2]

In Sem. - 105

- **Q5)** a) What is the condition for an most efficient channel section? Show that for economical trapezoidal channel section, the best side slope $=\frac{1}{\sqrt{3}}$.[3]
 - b) A concrete lined channel is to carry a discharge of $20\text{m}^3/\text{s}$ with a bed slope of $\lim 2500 \& \text{side slope of 1:1}$. Determine the channel dimensions. Take n = 0.013 what is the average shear stress along boundary. [5]
 - c) Derive the relation between Manning & chezy coefficent of roughness. [2]

OR

- **Q6)** a) Derive the relation between conjugate depth of an hydraulic jump. [5]
 - b) The discharge in a horizontal channel is 3.8 m³/s/m width & average velocity of flow 8.5 m/s. Will hydraulic jump occur, if so what is height of jump & energy lost in jump. [5]

