T.E. (Civil) - II
 ADVANCED SURVEYING (2012 Course) (Semester-II) (301007)

Time : 2 $1 / 2$ Hours]
[Max. Marks: 70
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8, Q. 9 or Q. 10.
2) Neat sketches must be drawn wherever necessary.
3) Figures to right indicate full marks.
4) Assume suitable data, if necessary.

Q1) a) Elevations of two triangulation stations A and $B, 90 \mathrm{~km}$ apart are 418.85 m and 702.63 m respectively. A peak $\mathrm{C}, 66 \mathrm{~km}$ from A, has an elevation of 524.6 m . Ascertain the intervisibility from A to B . Also find the minimum height of signal at B , so that the line must be pass at least 3 m clearance anywhere.
b) State the advantages of space based positioning system.

OR
Q2) a) Explain in brief classification of triangulation system.
b) Write a short note on segments of GPS.

Q3) a) Define tide and enlist the different types of tidal gauges.
b) Define Hydrographic surveying and enlist the various objectives of hydrographic surveying.

OR

Q4) a) Define the term Sounding. Describe any two methods of locating sounding.
b) Explain with neat sketch how alignment of tunnel is transferred from surface to underground.

Q5) a) Define the following terms: True error, Most probable value, Residual Error, Most probable error, Conditional quantity.
b) What is spherical excess? What are the methods of computing the sides of a spherical triangle? Explain any one method.
c) The angles of triangle ABC were recorded as follows:
$\mathrm{A}=77^{\circ} 14^{\prime} 20^{\prime \prime}$ Weight 4
$B=49^{\circ} 40^{\prime} 35^{\prime \prime}$ Weight 3
$\mathrm{C}=53^{\circ} 04^{\prime} 52^{\prime \prime}$ Weight 2
Find the most probable values of angle A, B, C. Use method of correlates.

OR

Q6) a) Define with example:
i) Observation equation and Conditioned equation
ii) Direct observation and Indirect observation
b) What do you understand by setting out works? What important factors are considered while setting out?
c) Angles were measured on a station and the observations were recorded as follows:
$\mathrm{A}=45^{\circ} 30^{\prime} 10^{\prime \prime}$ Weight 2
$\mathrm{B}=40^{\circ} 20^{\prime} 20^{\prime \prime}$ Weight 3
$\mathrm{A}+\mathrm{B}=85^{\circ} 50^{\prime} 10^{\prime \prime}$ Weight 1
Find the most probable values of the angles A and B. Use Normal Equation method.
Q7) a) What are the different types of Aerial photographs? [4]
b) Write a short note on Crab and Drift.
c) A scale of aerial photograph is 1:10000, effective at an average elevation of terrain of 500 m . The size of aerial photograph is $230 \mathrm{~mm} \times 230 \mathrm{~mm}$. Focal Length of camera is 20 cm . Speed of aircraft is 180 kmph , longitudinal overlap is 60% and side overlap is 30%. Determine the number of photographs required for the area of $30 \mathrm{~km} \times 22.5 \mathrm{~km}$. Also determine the exposure interval and flying height.
OR
Q8) a) Define the following terms: Air base distance, Exposure station, Principal
point, Flying height.
[8]
b) A line is measured 11 cm on a photograph taken with a camera having focal length of 21.5 cm . The same line is measured 3 cm on a map drawn to the scale $1: 45000$. Calculate the flying height of the aircraft, if the average altitude is 425 m .
Q9) a) Write a note on Active and Passive remote sensing.
b) Give the application of remote sensing with respect to natural hazards and that of archaeology.
c) What are the components of GIS?
OR
Q10)a) Write a note on application of remote sensing.
b) Describe the application of GIS.
c) Explain the advantages and disadvantages of Raster data and Vector data.

$\rightarrow+\rightarrow$

