Total No. of Questions :6]	Total	No.	of Q	uestions	:6]
------------------------------------	--------------	-----	------	----------	-----

SEAT No:	
-----------------	--

P169

[Total No. of Pages: 2

APR -17/ TE/Insem.-5 T.E. (Civil)

ENVIRONMENTAL ENGINEERING - I (2012 Course) (Semester-II)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, and Q.5 or Q.6.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables, slide rule, Mollier charts, electronics pocket calculator and steam tables are allowed.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Assume suitable data if necessary.
- Q1) a) If concentration of SO₂, CO and NO₂ are 1000 ppm, 4000 ppm and 500 ppm respectively. What are their concentration in μg/m³ at 25°C and 760mm of Hg pressure.
 - b) What is Inversion? Discuss various types of Inversions. [5]

OR

- **Q2)** a) Discuss various Noise control Techniques. Also write down the permissible noise levels for various category of area. [5]
 - b) Calculate resultant noise level in a workshop having 15 machines and each machine produces a noise of 75 dB. [5]
- **Q3)** a) Explain various points to be considered while selecting the site for intake structure. [5]
 - b) Enlist various types of Valves. Discuss use of each type in detail. [5]

OR

- **Q4)** a) Find the fire demand for a City having population of 20 Lakh by various formulae. [5]
 - b) What is population forecasting? Mention methods of population forecasting. Explain Various formulae of population forecasting with their meaning. [5]

P.T.O.

- **Q5)** a) Explain in detail laboratory test performed for determination of Hardness. [5]
 - b) Design the cascade type circular aerator with the following data. [5]
 - i) Quantity of water flowing over aerator per day = 120×10^6 lit/day.
 - ii) Loading Rate = $0.03 \text{ m}^2/\text{m}^3/\text{Hr}$.
 - iii) Velocity of flow in collecting channel = 1 m/s.

OR

- Q6) a) Prove that efficiency of removal of particles of given settling velocity is inversely proportional to the surface loading rate.[5]
 - b) A rectangular sedimentation tank of size $17.5 \text{m} \times 5.5 \text{m} \times 3.5 \text{m}$ is treating 2.5×10^6 lit/day of water. If 80 ppm suspended impurities are present in the water, assuming 70% removal takes place in sedimentation tank and specific gravity as 2.0, Determine,
 - i) Average flow of water through the tank.
 - ii) Detention time.
 - iii) Deposition of impurities in the tank.
 - iv) Overflow rate.

[5]

TE/Insem.-5

2