Total No	o. of Questions : 12]	CIE A TE NIO
P2364	•	SEAT No. : Total No. of Pages : 3
	T.E. (Civil)	
	ENVIRONMENTAL ENGINEE	RING-I
	(2012 Pattern) (Semester - II) (En	nd - Sem.)
Time : 2	² / ₂ Hours]	[Max. Marks :70
Instructi	ons to the candidates:	
1)	Answer Q.1 or 2, Q.3 or 4, Q.5 or 6, Q.7 or 8, Q.9 or	10, Q. 11 or 12.
2)	Neat diagrams must be drawn wherever necessary.	
3)	Figures to the right side indicate full marks.	
4)	Assume suitable data, if necessary.	
5)	Use of Scientific calculator is allowed.	
Q1) Ex	plain the noise control techniques.	[6]
	OR	
Q2) Ex	plain primary and secondary air pollutants and s	tate their importance. [6]
~	plain with neat sketch the working, location and d non-return valve.	function of air relief valve [6]
	OR	
Q4) Ex	plain with neat sketch river intake and lake intak	e. [6]

OR

Q5) Explain type I and type II settling. What are the various types of plain sedimentation basins? Explain any one basin type with a neat sketh. [8]

P.T.O.

Q6)	Desi	esign a tube settler module with the following data- [8]	
	a)	Average output required from tube settler = 250m ³ /hr.	
	b)	Loss of water in desludging = 2% of output required.	
	c)	Average design flow = $(250 \times 100)/(100-2) = 255.1 \text{ m}^3/\text{hr}$.	
	d)	Cross section of square tubes - 50mmx50mm.	
	e)	Length of tubes = 1m.	
	f)	Angle of inclination of tubes 60°.	
Q7)	in de	Design a clariflocculator for desired average outflow of $250\text{m}^3/\text{hr}$, water lost n desludging-2%, design average flow = $(250\text{x}100)/(100\text{-}2)=255.1 \text{ m}^3/\text{hr}$, detention period - 20 minutes and average value of velocity grdient G = 40/second. [16]	
		OR	
Q8)	Design a RSGF unit for treating 400 MLD of supply, with underdrainage system and wash water troughs. [16]		
Q9)	a)	Explain chlorine demand, residual chlorine, super chlorination, dechlorination, rechlorination and post chlorination. [9]	
	b)	Chlorine usage in treatment plant of 20MLD of water is 8.5 kg/day. The residual chlorine content after 10min. is 0.2 mg/L. Calculate dosage of chlorine in mg/L and chlorine demand of water. [4]	
	c)	State the factors affecting chlorination. [3]	

OR

Q10) State the principles, working, advantages and disadvantages of water softening by zeolite method and demineralization of water by ion exchange method. [16]

[4758]-508

- Q11)a) Describe the various layouts of distribution networks in water supply scheme and state their advantages and disadvantages. [10]
 - b) Explain detection and prevention of wastage of water. [8]

OR

- Q12)a) Explain the benefits of rain water harvesting and discuss the different methods of rain water harvesting. [10]
 - b) Explain RO process with a neat sketch. [8]

888