Total No. of Questions: 6]
----------------------------------	---

P488

SEAT No.:		
[Total	No. of Pages :	2

TE/Insem/APR - 15 T.E. (Electrical) CONTROL SYSTEM - I (2012 Pattern) (Semester - II)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4 & Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- **Q1)** a) Compare: Feedback & Feed forward control system.
- [4]
- b) Determine the transfer function of electric network.
- [6]

Q2) a) Explain general classification of control system. What are the advantages and disadvantages of closed loop system over open loop system. [4]

b) Obtain transfer function of block diagram.

P.T.O.

[6]

Q3) a) Write a short note on

[6]

- i) Lead Compensator
- ii) AC Tachometer
- b) Define transfer function. State its advantages and disadvantages. [4]

OR

- Q4) a) Write a short note on DC servomotor. Derive its transfer function. [6]
 - b) Explain force current analogy. [4]
- Q5) a) Define steady state error and position, velocity and acceleration error constants and corresponding steady error.[4]
 - b) For the unity feedback system having $G(s) = \frac{K}{s(Ts+2)}$, find the factor by which the gain K should be multiplied to increase the damping ratio from 0.15 to 0.6. [6]

OR

- Q6) a) Give definition and write an expression for rise time, peak time, peak overshoot, settling time.[4]
 - b) Find type, order, steady state error of the system, having unity feedback

system of
$$G(s) = \frac{K(s+4)}{s(s^3 + 8s^2 + 4)}$$
 when input is $\frac{At^2}{2}$. [6]

