| <b>Total No. of Question</b> |
|------------------------------|
|------------------------------|

SEAT No:

P179

## APR -17/ TE/Insem. - 15

[Total No. of Pages :3

## T. E. (Electrical) CONTROL SYSTEM- I

(Semester - II) (2012 Course)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.

## **Q1)** a) Compare:

[4]

- i) Feedback & Feed forward control system.
- ii) Open loop & Closed loop control system.
- b) Obtain the overall transfer function for a system represented by a block diagram. [6]



**Q2)** a) Define:

[4]

- i) Transfer Function.
- ii) Pole & Zero of a system.

*P.T.O.* 

b) Obtain a mathematical model for the mech. system shown. Write DE, using F-V analogy. Draw equivalent mechanical circuit. [6]



- **Q3)** a) What is lead network? Obtain the TF of lead network. [4]
  - b) Obtain the block diagram representation of AC servomotor. [6]

OR

- **Q4)** a) Write a short note on Synchro Transmitter receiver.
  - b) Explain AC tachogenerator. [4]

[6]

- **Q5)** a) Write the expression for closed loop TF for First order system and the effect of time constant on system performance. [4]
  - b) A unity feedback sys. is characterised by an open loop.

$$TF = K/s (s+10)$$

Determine the gain K so that the system will have a damping ratio of 0.5. for this value of K determine settling time, Peak overshoot & time to peak overshoot for a unit step input. [6]

OR

**Q6)** a) The block diagram for a unity feedback control system is shown in fig. [6]



Determine the characteristic equation of the system,  $\omega n$ ,  $\xi$ ,  $\omega d$ , tp, Mp, the time at which the first overshoot occurs, the time period of oscillations and the number of cycles completed before reaching the steady state.

b) Define Static error constant & write the expression for them. [4]

## **(38)(38)**