Total No. of Questions: 6]
P487	

SEAT No. :		
[Total	No. of Pages :	2

TE/Insem/APR - 14 T.E. (Electrical) POWER SYSTEM - II (Semester - II) (2012 Pattern)

Time: 1 Hour [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) A long transmission line delivers a load of 60 MVA at 110 kV, 50 Hz at 0.8 pf lagging. The constants at transmission line are $A = D = 0.98 \angle 0.32^{\circ}$, $B = 70.3 \angle 69.2^{\circ}$, $C = 4.44 \times 10^{-3} \angle 90^{\circ}$. [6]
 - i) Sending end active and reactive power.
 - ii) Line Losses
 - b) Explain the procedure for drawing the receiving end circle diagram. [4]

OR

- Q2) a) Derive the equation for active and reactive power flow at the receiving end using generalized constants of transmission line.[6]
 - b) Explain Surge Impendence & Surge Impendence Loading. [4]
- Q3) a) For HVDC transmission system, write short note on Constant current control.[5]
 - b) Draw the configuration of HVDC system indicating all the components.[5]

OR

P.T.O.

- Q4) a) For HVDC transmission system, write short note on
 - i) Homo polar HVDC system

[6]

[4]

- ii) Mono polar HVDC system.
- b) What are the merits of HVDC system over EHVAC system?
- Q5) a) Write down the formula to calculate power loss due to corona. What are the factors affecting it? [5]
 - b) What are the merits EHVAC systems?

[5]

OR

- **Q6)** a) Find the disruptive critical voltage and visual critical voltage for local and general corona for a three phase line consisting of 21 mm diameter conductors spaced in 6 m delta configuration. Take temperature 25°C, pressure 73 cm of mercuary, surface factor 0.84, irregularity factor for local visual corona 0.72 and for general (decided) visual corona 0.82.**[6]**
 - b) Explain power handling capacity and power loss at varous voltage levels. [4]

