Total No. of Questions: 8]		SEAT No. :
P2881	[4050] 4050	[Total No. of

[4958]-1070

[Total No. of Pages :3

T.E.(Electrical.)

UTILIZATION OF ELECTRICAL ENERGY (2012 Pattern)(Semester-II) (End sem)

Time: 2½ Hours] IMax. Marks: 70

Instructions to the candidates:

- Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- Use of logarithmic tables, slide rule, Mollier charts, electronics pocket calculator is 3) and steam table is allowed.
- Assume suitable data if necessary.
- *Q1*) a) Define: [6]
 - i) Solid Angle
 - Reflection factor ii)
 - iii) Coefficient of Utilization
 - Write a note on Anodizing. b)

[6]

- A piece of an insulating material is to be heated by dielectric heating. The c) size of the piece is 12 cm X 12 cm X 3 cm. A frequency of 30 MHz is used and the power absorbed is 500 watt. If material has relative permittivity of 5 and power factor of 0.05. Calculate. [8]
 - i) The voltage necessary for heating
 - ii) Current flowing through the material
 - Frequency to get the same loss if voltage were limited to 1700 V. iii)

OR

- Explain construction and working of *Q2*) a)
 - Push button i)
 - Contactor [6] ii)
 - With suitable diagram explain mercury vapour lamp. b) [6]
 - An electric furnace consuming 5 KW takes 15 minutes to just melt 4lbs c) of aluminium, the initial temperature being 15°C. Find the efficiency of the furnace. Specific heat of Aluminium is 0.212, melting point is 658°C and latent heat of fusion is 76.8 cal per gram. 860 K cal = 1KWH. [8]

P.T.O.

Q3)	a)	Compare steam engine drive and electric drive.	[8]
	b)	Describe composite system.	[8]
		OR	
Q4)	a)	Draw and explain block diagram of electric locomotive.	[8]
	b)	Explain functions of following equipments in traction substation.	
		i) Circuit breaker.	
		ii) Interrupter	
Q5) a) Define:		Define:	[8]
		i) Average Speed	
		ii) Schedule speed	
		iii) Coefficient of adhesion	
		iv) Tractive effort	
	b)	A train is required to run between two stations 1.6 km apart at an aver speed of 40 kmph. The run is to be made to a simplified quadrilate speed-time curve. If the maximum speed is to be limited to 64 km acceleration to 2 kmphps and coasting and breaking retardation to 6 kmphps and 3.2 kmphps respectively. Determine the duration acceleration, coasting and breaking periods. Also draw speed-time curves.	eral iph, 0.16
		OR	
Q6)	a)	Derive the expression for simplified quadrilateral speed time curve.	[8]
	b)	An electric train weighing 200 tonne has eight motors geared to driv wheel, each wheel is 90 cm diameter. Determine the torque develops each motor to accelerate the train to a speed of 48 kmph in 30 second a gradient of 1 in 200. The tractive resistance is of 50 N/tonne. The effect of rotational inertia is 10% of the train weight, the gear ratio is 1 and gearing efficiency is 80%.	ring ped nds The
Q7)	a)	Explain French method of Regenerative braking.	[6]
	b)	What are the desirable characteristics of motor for traction purpose	.[6]

- c) A motor coach weighing 150 tonne is equipped with 4,600 V motors for series parallel control. The current per motor is 300 A. Calculate [6]
 - i) Duration of starting period
 - ii) Speed of the train at transition

At 300 A, 600 V, tractive effort is 15000 N per motor and the train speed is 30 kmph. Assume that train is started up a gradient of 1% and train resistance is 10N per tonne. Allow 10% for the effect of rotational inertia. Each motor has a resistance of 0.1 ohm.

OR

- **Q8)** a) How A.C series motor is suitable for traction. [6]
 - b) Explain transition methods with neat diagram. [6]
 - c) Derive the expression for energy lost and efficiency for series parallel control of two DC series motor. [6]

3