Total No. of Questions: 6]	
P490	

SEAT No. :	
	 _

[Total No. of Pages: 2

TE/Insem/APR - 17 T.E. (Electrical) DESIGN OF ELECTRICAL MACHINES (2012 Pattern) (Semester - II)

Time: 1 Hour | [Max. Marks: 30]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) What are different modes of heat dissipation? Define heating time constant and cooling time constant and state thier units.[5]
 - b) Derive the expressions for heating time constant $\left\{ Th = \frac{Gh}{S\lambda} \right\}$. [5]

OR

- Q2) a) The temperature rise of transformer is 25°C after 1 Hr & 37.5°C after 2 Hrs of starting from cold conditions. Calculate its final steady state temperature rise & heating time constant.
 [4]
 - b) Explain with diagram the use of tap changer and conservator. [6]
- Q3) a) Derive the output equation for three phase transformer with usual notations. [5]
 - b) A 200 kVA, 50 Hz, 1 phase, core type transformer has following data-Maximum flux density: 1.3 Tesla; Current Density: 2.5 A/mm², Window space factor: 0.3; Assume cruciform core, voltage per turn to be 14V and distance between the adjacent limbs is 1.4 times that of width of largest stamping. Calculate overall dimensions of transformer. [5]

OR

P.T.O.

- Q4) a) Derive the expression for leakage reactance for three phase core type of transformer referred to primary.[5]
 - b) The full load efficiency of a 200 kVA transformer is 97% at unity power factor. Find the number of cooling tubes required if allowed temperature rise is 35°C. The tank area may be assumed to be 5 m². Assume diameter of cooling tube as 5 cm and average length of tube is 100 cm. Heat dissipation of tank surface is 12.5 W/m² and heat dissipation of tubes 8.8 W/m² °C.
- Q5) a) Explain the procedure to calculate working/loss component of no load current for there phase transformer.[4]
 - b) Calculate the percentage regulation at full laod 0.8 pf lag for a 300 kVA, 6600/440 V, delta star, 3 phase, 50 Hz, core type transformer having cylindrical coils of equal length with the following data. Height of coils = 4.7 cm, thickness of HV coil = 1.6 cm, thickness of LV coil = 2.5 cm, insulation between LV & HV coils = 1.4 cm, Mean diameter of the coils = 27 cm, volt/turns = 7.9 V, full load copper loss = 3.75 Kw. [6]

OR

- **Q6)** a) Derive the expression for Axial Force for core type of transformer. [6]
 - b) Draw generalised flow chart for design of transformer. [4]

TE/Insem/APR-17