| <b>Total No. of Questions:</b> | 8] |
|--------------------------------|----|
|--------------------------------|----|

P1312

| No. : |
|-------|
| No. : |

[Total No. of Pages: 3

## [4858] - 1042

## T.E. (Electronics & Telecommunication) (Semester - I) DIGITAL COMMUNICATION (2012 P. 14 C. ) (F. 14 C. )

(2012 Pattern) (End -Sem.)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Explain with the help of block diagram formating and transmission of baseband signal. [8]
  - b) Define mean, corrdation, standard deviation of a random process. [6]
  - c) Draw the block diagram of DM transmitter and explain its working. Comment on the drawbacks of DM. [6]

OR

- **Q2)** a) Define the terms related to digital communication
  - i) Messages
  - ii) Characters

iii) Symbols [6]

- b) Explain digital signal hierarchy using TI carrier system. [6]
- c) The output of an oscillatus is described by  $x(t) = A\cos(\pi F t + \theta)$  [8]

where the amplitude A is constant and F and  $\phi$  are independent random variables. The probability density function of  $\theta$  is defined by

$$f_{\phi}(\theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le \theta \le 2\pi \\ 0 & \text{otherwise} \end{cases}$$

Find the power spectral density of x(t) in terms of the probability density function of the frequency F.

*P.T.O.* 

*Q3*) a) Consider the signal S(t) shown in fig.



Determine the impulse response of a filter matched to this signal and sketch it as a function of time, plot the matched filter output as a function of time.

b) Derive the expression of SNR for optimum filter.

OR

**Q4)** a) Write a short note on

[8]

[8]

[8]

- i) MAP
- ii) LRT
- b) Draw & explain signal space representation of following signal. [8]
  - i) BPSK
  - ii) 8 Aray PSK

Q5) a) Explain block diagrams for generation and reception of M-ary PSK signals. With suitable mathematical expressions, signal space representation Bandwidth and PSD. [10]

Binary data is transmitted using PSK at a rate 3M bps over RF link having bandwidth 10MHz. Find signal power required at receiver input so that error probability is less than or equal to  $10^{-4}$  Assume noise PSD to be  $10^{-10}$  watt/Hz. [Q (3.71) =  $10^{-4}$ ]

OR

**Q6)** a) Explain with block diagram QPSK recieves Write an expression for its error probability [8]

b) find error probability of co-herent FSK when amplitude of I/P at coherent optimal receiver is 10mv and frequency 1MHz, the signal corrupted with white noise of PSD 10<sup>-9</sup> W/Hz. the data rate is 100kbps.

[erfc 
$$(1.01) = 0.1531$$
, erfc  $(1.11) = 0.1164$ , erfc  $(1.22) = 0.0844$  & erfc  $(1.33 = 0.0599)$ ] [10]

- **Q7)** a) Draw and explain 4bit P.N. sequence generator and find maximum length sequence. [8]
  - b) The signal has the following parameter number of bits per MFSK symbol K=2 number of MFSK tone  $M=2^k=4$  length of PN sequence per hop K=3 total No. frequency hops  $2^k=8$  sketch the o/p transmittes freq of fast FH/MFSK signals.

OR

- **Q8)** a) Write a short note on personal communication system (PCS) [8]
  - b) Compare DSSS with FHSS system. [8]

