Iotal No	o. 01 Q	uestions: 10] SEAT No. :		
P350	3	[5560]-152	No. of Pages : 4	
		T.E. (E & TC)		
		DIGITAL SIGNAL PROCESSING		
		(2012 Course) (304182)		
Time: 2	½ Ho u	ers) [1	Max. Marks : 70	
		the candidates:		
1) 2)		ver all questions. res to the right indicate full marks.		
-/	3	. e. ve me ng umeme jun mum.		
Q1) a)	Dr	Draw the spectrum for three Nyquist cases of sampling as		
	i)	$f_s > 2 f_{max}$		
	ii)	$f_{\text{max}} < f_{\text{s}} < 2 f_{\text{max}}$		
	iii)	$f_{s} < f_{max}$		
	wi	th respect of frequency axis.	[6]	
b)		Write analysis and synthesis equations for DTFT. V		
		basis function.		
	ii)	What is orthogonality? Write its application.		
			[4]	
		OR		
Q2) a)	Ca	lculate 4-point DFT using DIT-FFT algorithm for $x(n)$	$=2^{(2n)}$ [6]	
b)	Fir	and $X(5), X(6), & X(7)$ for given 8-point DFT,		
	X(k) = {20, -5.82 -2.41 j , 0, -0.17 -0.41 j , 0,,,	,}	
	Wl	hich property did you use for writing remaining three va	alues? [4]	
Q3) a)	Dr	aw the ROC for		
	i)	Stable & causal		
	ii)	Stable & non-causal		
	iii)	Unstable & causal		
		R systems.	[6]	
b)	Wı	rite any two properties of DFT along with their mathemat		
		\bigcirc D	[4]	
		OR		

P.T.O.

Q4) a) Determine the system function H(Z) of

$$y(n) + \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1).$$

Show poles & zeros in Z-plane.

[6]

b) Calculate Z-transform of

$$x(n) = \left(\frac{1}{4}\right)^{(n-1)}$$
. Draw ROC. [4]

Q5) a) i) Convert the analog filter with system function,

Ha(S) =
$$\frac{S + 0.1}{(S + 0.1)^2 + 16}$$

into a digital IIR filter by means of the Bilinear Transformation. The digital filter is to have a resonant frequency of $Wr = \frac{\pi}{2}$.

- ii) Implement this filter using Direct form II structure. [8]
- b) Draw the labelled magnitude response for
 - i) Butterworth LPF
 - ii) Chebyshev Type I & Type II LPF

Show
$$f_p$$
, f_c , f_s in the diagram.

[8]

OR

- **Q6)** a) i) Write the substitutions for 'S' for
 - 1) Approximation of derivatives
 - 2) Impulse Invariance
 - 3) Bilinear Transformations

to convert the analog TF to digital TF (transfer function)

ii) State one advantage & one limitation of Impulse Invariance Method.

[8]

[5560]-152

- b) Realize the
 - i) Cascade &
 - ii) Parallel form

structure for the given TF:

$$H(Z) = \frac{\left(1 - \frac{1}{2}Z^{-1}\right)}{\left(1 - \frac{1}{4}Z^{-1}\right)\left(1 + \frac{1}{4}Z^{-1}\right)}$$
[8]

- **Q7)** a) Determine a Direct form realization for the following linear phase filters
 - i) $h(n) = \{1, 2, 3, 4, 3, 2, 1\}$

ii)
$$h(n) = \{1, 2, 3, 3, 2, 1\}$$
 [8]

- b) Write expressions for
 - i) Phase delay
 - ii) Group delay
 - iii) Linearity condition for symmetrical & antisymmetrical FIR systems.

[8]

Draw

- i) Symmetric and
- ii) Asymmetric impulse responses

OR

- **Q8)** a) i) What are the possible types of impulse response for linear phase FIR filters?
 - ii) The frequency response of a digital filter is

$$H(e^{jw}) = (0.4 + 0.7\cos 2w - 0.5\cos 4w).e^{-j(0.3\pi + 4w)}$$

Determine the phase delay and group delay.

[8]

b) Design a linear phase FIR low pass filter using rectangular window by taking 7 samples of window sequence, and with a cut-off frequency, $W_c = 0.2\pi$ rad/sample.

Implement the above designed FIR LPF using linear phase structure.

[8]

[5560]-152

Q9)	a)	i)	Draw block schematic for	
			1) Decimation	
			2) Interpolation	
		ii)	Consider the discrete time signal,	
			$x(n) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$	
			Determine the result of the signal when	
			1) $D = 2 \&$	
			2) $I = 3$	
			3) $I = 2$	
				[9]
	b)	Disc	euss:	
		i)	DMA	
		ii)	MAC and	
		iii)	VLIW architecture	
				[9]
			OR	
Q10)Wri	te sho	ort notes on:	[18]
	i)	Mus	sic signal processing	
	ii)	Imag	ge processing	

Radar signal processing

iii)