Total No. of	Questions	:	6]
--------------	------------------	---	------------

SEAT No.:	
-----------	--

[Total No. of Pages: 2

P5024

T.E. / Insem. - 522

T.E. (E & Tc)

DIGITAL SIGNAL PROCESSING

(2012 Pattern) (Semester - I)

Time: 1 Hour] [Max. Marks:30

Instructions to the candidates:

- 1) Attempt Q.No.1 or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q.No.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) All questions carry equal marks.
- 5) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 6) Assume suitable data, if necessary.
- (21) a) What are the advantages and limitations of digital signal processing. [4]
 - b) Consider the analog signal

$$x_{0}(t) = 5\cos(2000\pi t) + 3\sin(6000\pi t) + 10\cos(12000\pi t)$$
 [6]

- i) What is the Nyquist rate of the signal?
- ii) If $F_s = 5000$ samples / sec., what is the discrete-time signal obtained after sampling?
- iii) What is the analog signal y_a(t) that can be reconstructed in (ii), if ideal interpolation is used?

OR

- **Q2)** a) Explain the frequency relationship between continuous time and discrete time signals. [3]
 - b) What is the need of antialiasing filter in a DSP system? [3]
 - c) Determine which of the following pairs of vectors are orthogonal? [4]
 - i) $a_1 = [-2 \ 1 \ 3 \ -1 \ 1] \& b_1 = [4 \ -1 \ 0 \ -1 \ 8]$
 - ii) $a_2 = [1 \ 3 \ -2 \ 2 \ 4] \& b_2 = [5 \ 2 \ -3 \ -1 \ 2]$

P.T.O

Q3) a) State and prove any two properties of DFT. [4]

- b) Find the 4 point DFT of the following sequence $x(n) = \{1 \ 2 \ 3 \ 4 \}$. [4]
- c) Write short note on Overlap Save Method. [2]

OR

Q4) a) Find X (k) Using DIT FFT algorithm for N = 4. [4] $x(n) = \{0 \ 1 \ 2 \ 3\}.$

- b) Compute the DCT of the following sequence $x(n) = \{1 \ 2 \ 4 \ 7\}$. [4]
- c) Write short note on Overlap Add Method. [2]
- **Q5)** a) State and prove any two properties of Z transform. [4]
 - b) Find the Z transform of the following sequences and state ROC. [6]
 - i) $x(n) = a^n, n \ge 0$ = 0, n < 0

ii)
$$x(n) = \left(\frac{1}{3}\right)^{n-1} u(n-1)$$

iii)
$$x(n) = \{1 \ 2 \ 3 \ 4\}$$

OR

Q6) a) State the relationship between Z transform and DFT. [3]

b) Compute Inverse Z transform of

i)
$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$
 for $|z| > 1$

ii)
$$X(z) = \frac{1}{3z^2 - 4z + 1}$$
 for $|z| > 1$ [5]

c) Plot ROC and pole - zero pattern of
$$X(z) = \frac{z^4 - 1}{z^4}$$
 [2]

 \bigcirc

T.E./Insem.-522