Total No. of Questions :8]	SEAT No.:			
P2580	[Total No. of Pages :4			

[5153] - 556

T.E. (Electronics & Telecommunication Engineering) INFORMATION THEORY AND CODING TECHNIQUES

(2012 Course) (Semester - II) (304189) (End Sem.)

Time : 2½ *Hours*] [Max. Marks:70

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- Figure to the right side indicate full marks.
- 3) Use of calculator is allowed.
- 4) Assume suitable data if necessary.
- **Q1)** a) The joint probability matrix representing transmitter and receiver is given below. Find all entropies and mutual information of the communication system [6]

$$P(X,Y) = \begin{bmatrix} 0.3 & 0.05 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0.15 & 0.05 \\ 0 & 0.05 & 0.15 \end{bmatrix}$$

Obtain the coding efficiency of a Shannon Fano for a zero memory b) sources that emits eight messages with respective probabilities as given below. Use 3 letters for encoding such as -1, 0, 1. [6]

$$P = [0.3 \quad 0.12 \quad 0.12 \quad 0.12 \quad 0.12 \quad 0.08 \quad 0.07 \quad 0.07]$$

$$X = [x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8]$$

Explain the case study related to application of Huffman's coding and c) JPEG in image compression.

OR

P.T.O.

Q2) a) The Party check matrix of a (7, 4) Hamming Code is given as below: [7]

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- i) Find Generator Matrix.
- ii) Find out all possible codewords.
- iii) Determine error correcting capability of the code.
- b) Consider (7, 4) cyclic code: with $g(x) = x^3 + x + 1$. [7]
 - i) Draw the hardware arrangement of cyclic encoder and verify the encoder by considering one message.
 - ii) If received code vector is 1001101, find out transmitted or corrected codeword.
- c) Explain any two properties of mutual information and show that Shannon's limit for AWGN Channel is -1.6dB. [6]
- Q3) a) Find generator polynomial for BCH code over GF(16) using primitive polynomial $P(x) = x^2 + x + 2$ over GF(4) codeword. The code should correct $t_c=1$, 2 errors. The addition and multiplication tables are as given below: [8]

+	0	1	2	3		0			
0	0	1	2 3	3	0	0	0	0	0
1	1	0	3	2	1	0	1	2	3
2	2	3	0	1	2	0	2	3	1
3	3	2	1	0	3	0	3	1	2

b) Write short notes on

[6]

- i) CRC codes
- ii) Golay Codes
- c) Explain FEC technique for Error Control.

[4]

OR

- **Q4)** a) Explain the steps of BCH decoding with Goreinsein Zierler Algorithm.[6]
 - b) Explain the applications of RS codes and CRC code. [6]
 - c) Distinguish between BCH and RS codes. [6]
- **Q5)** a) Explain the following:

[12]

- i) Code Rate
- ii) Constraint Length
- iii) Word Length
- iv) Block Length
- v) Free Distance
- vi) Hamming Distance
- b) What are Turbo Codes? Explain the coding and decoding of Turbo codes. [4]

OR

Q6) a) For the convolution encoder shown in fig below, construct the Code tree and trellis diagram, find out the out of the encoder corresponding to message sequence 10110 using trellis.[10]

b) Explain Sequential decoding and Viterbi decoding.

[6]

[5153] - 556

- **Q7)** a) What are the Ungerboek's TCM design rules. Explain asymptotic coding gain. [6]
 - b) Consider the 8 state, 8 PSK TCM scheme as shown below. [10]

- i) Draw trellis diagram
- ii) Find d_{free} and Asymptotic coding gain and comment on it.

OR

Q8) a) Discuss Mapping by Set partitioning.

[6]

- b) Explain Euclidean distance, Asymptotic coding gain of trellis coded Modulation. [4]
- c) Draw and explain the band limited and power limited coding system.[6]

888