Total No. of Questions: 10	1
----------------------------	---

SEAT No.:	
-----------	--

P2412

[4758] - 580

[Total No. of Pages :3

T.E. (Computer)

THEORY OF COMPUTATION

(2012 Course) (End-Sem.) (310241)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, wherever necessary.
- **Q1)** a) Explain Basic Machines. What are its limitations? How is Finite Automata more capable than Basic Machines? Justify with examples. [6]
 - b) Write a CFG that generates language L denoted by,

$$(a+b)*.bbb. (a+b)*.$$
 [4]

OR

Q2) a) Convert the following finite automation into its equivalent regular expression using Arden's Theorem.[6]

- b) If S={a,bb}, find the set of all strings in S* with string length less than or equal to 5. Also for given S, prove whether the following is true or false.
 (S*)+ = (S+)*.
- Q3) a) Design Moore Machine and Mealy Machine to find one's complement of a binary number.[6]

P.T.O.

	b)	Write the CFG for language $L = \{0^i 1^j 0^k \mid j > i + k\}.$	
		Show the derivation of the string '0111100'.	[4]
		OR	
Q4)	a)	Define the following and give appropriate examples:	[6]
		i) Unrestricted Grammar	
		ii) CFG	
		iii) Derivation Graph	
	b)	Construct FA for the regular expression: (11)*.010. (11)*.	[4]
Q5)	a)	Design a Turing Machine to recognize an arbitrary string divisible by given $\Sigma = \{0,1,2\}$.	7 4 [0]
	b)	Design a Turing Machine that accepts a language $L = \{0^n1^n0^n \mid n > = 1\}$	1 } [8]
		OR	
Q6)	a)	Construct a TM that accepts a language L, a* ba*b.	[6]
	b)	How can Turing Machines be compared to computers?	[6]
	c)	Prove that the halting problem in Turing Machines is undecidable.	[6]
Q7)	a)	Construct transition table for PDA that accepts the language $L = \{a^{2n} \mid n > =1\}$. Trace your PDA for the input with $n = 3$.	b¹ b¹
	b)	Define push down automata (PDA). What are the different types of PDA Give the applications of PDA.	A? [6]
		OR	
Q8)	a)	Give a grammar for the language L(M), where: $\mathbf{M} = (\{\mathbf{q}_0, \mathbf{q}_1\}, \{0,1\}, \{\mathbf{z}_0, \mathbf{x}\}, \boldsymbol{\delta}, \mathbf{q}_0, \mathbf{z}_0, \boldsymbol{\Phi}).$	[8]
[475	8]-58	80 2	

And δ is given by:

$$\delta(q_0, 1, z_0) = (q_0, xz_0) \qquad \delta(q_0, \varepsilon, z_0) = (q_0, \varepsilon)$$

$$\delta(q_{0}, l, x) = (q_{0}, xx)$$
 $\delta(q_{1}, l, x) = (q_{1}, \varepsilon)$

$$\delta(q_{o}, 0, x) = (q_{v}, x) \qquad \delta(q_{o}, 0, z_{o}) = (q_{o}, z_{o})$$

b) Construct PDA for the following regular grammar: [8]

$$S - > 0A \mid 1B \mid 0$$

$$A - > A 0 \mid B$$

$$B - c d$$

Q9) a) Justify that the SAT Problem is NP-complete. [8]

b) Explain in detail, the polynomial -time reduction approach for proving that a problem is NP- Complete. [8]

OR

- **Q10)**a) Explain the Node-Cover Problem with a suitable example. [8]
 - b) Explain Tractable and In-tractable Problem. [4]
 - c) Justify whether the Traveling Salesman Problem is a class P or class NP problem. [4]

