$\square$

# T.E. (Computer Engg) THEORY OF COMPUTATION (2012 Pattern) (Semester-I) 

## Time : $2^{1 ⁄ 2}$ Hours]

[Max. Marks : 70
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right Indicate full marks.
4) Assume suitable data, if necessary.

Q1) a) Determine the regular expression over the alphabets $\{a . b\}$ for the following.

1) All the strings containing exactly two a's
2) All the strings containing $a b$
3) All the strings starting with $x x$
b) Determine the regular expression for following finite automata using Arden's Theorem.

c) Prove that $(1+00 * 1)+(1+00 * 1)(0+10 * 1) *(0+10 * 1)=0 * 1(0+10 * 1)$.

## OR

Q2) a) Construct NFA for the regular expression $b+b a^{*}$
b) Prove by Mathematical Induction $2^{0}+2^{1}+2^{2}+2^{3}+\ldots \ldots+2^{n}=2^{n+1}-1$ for all integers $n>=0$
c) Construct CFG for the language $L=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 2^{\mathrm{k}} \mid \mathrm{j}<\mathrm{k}\right\}$

Q3) a) Convert the following CFG to chomskey's normal form (CNF)
$\mathrm{S} \rightarrow \mathrm{AB},\left.\mathrm{A} \rightarrow \mathrm{CA}\right|^{\wedge},\left.\mathrm{B} \rightarrow \mathrm{DB}\right|^{\wedge}, \mathrm{C} \rightarrow 011 \mid 1, \mathrm{D} \rightarrow 01$
b) Remove the $\varepsilon$ productions from the CFG by preserving meaning of it.
$\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{XYX}, \mathrm{X} \rightarrow \mathrm{OX}|\varepsilon, \mathrm{Y} \rightarrow 1 \mathrm{Y}| \varepsilon\}$
c) Write a short note on
a) Unrestricted Grammar
b) CFG
c) Derivation Graph

## OR

Q4) a) Construct Finite Automata for

- $01\left[\left(\left(10^{*}\right)+111^{*}\right)+0\right]^{*} 1$
- $\quad 1(1+10)^{*}+10(0+01)^{*}$
b) Simplify the following Grammar
- $\mathrm{S} \rightarrow \mathrm{Ab}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{C} \mid \mathrm{b}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{a}$
- $\quad \mathrm{S} \rightarrow 0 \mathrm{~A} 0|1 \mathrm{~B} 1| \mathrm{BB}, \mathrm{A} \rightarrow \mathrm{C}, \mathrm{B} \rightarrow \mathrm{S}|\mathrm{A}, \mathrm{C} \rightarrow \mathrm{S}| \varepsilon$

Q5) a) What is post machine? Construct a post Machine for strings having odd length and 'a' as a center symbol over $\Sigma(a, b)$.
b) What is NPDA? Construct a NPDA for $L=\left\{a^{i} b^{j} c^{k} \mid i \neq j\right.$ or $\left.j \neq k\right\}$

## OR

Q6) a) What do you mean by NP-Complete problems? List all the problems in the class and explain any one in detail.
b) Why do we need to reduce the given problem to Np-complete problem? Explain with suitable example.

Q7) a) What is SAT problem? Explain in detail.
b) What are tractable and Intractable problems? Explain
c) What is Computational Complexity? Explain.

## OR

Q8) a) Construct TM which accepts even palindrome strings over the $\Sigma=\{$ a.b $\}$.
b) Explain travelling salesperson problem.

