Total No. of Questions : 6]

SEAT No. : [Total No. of Pages : 3

P5038

T.E./Insem. - 536 T.E. (Computer) THEORY OF COMPUTATION (2012 Pattern) (Semester - I)

Time: 1 Hour | [Max. Marks: 30]

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- 3) Assume Suitable data if necessary.
- **Q1)** a) Define Regular Expression. What are its limitations? List applications of RE.
 - b) Define Pumping Lemma Using Pumping Lemma for regular sets prove the following:

$$L = \{0^m \ 1^n \ 0^{m+n} | m \ge 1 \text{ and } n \ge 1\} \text{ is not regular}$$

c) Draw a FA for strings which do not contains 00 as substring over alphabets {0, 1}.

OR

- **Q2)** a) Show by principle of mathematical induction $1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6$. [4]
 - b) Define Countable Set. Show that any subset of a countable set is countable. [3]
 - c) Define Deterministic and Non Deterministic Finite Automata in terms of
 5-Tuple and discuss various applications of it. [3]

P.T.O.

Q3) a) Construct a DFA over the alphabets $\{0, 1\}$ for accepting the strings [4]

- i) Ending with 10
- ii) Ending with 11

b) State and Explain Arden's theorem. [2]

c) Convert the NFA shown in **Table 1** to its equivalent DFA. [4]

OR

Q4) a) List the limitations of finite automata.

[2]

b) Consider the Moore machine described by **Table 2**. Construct the corresponding Mealy Machine. [4]

c) Design a NFA to recognize the strings wwyz, wxy, wyz, wxxy over alphabets {w, x, y, z} [4]

	0	1
$\rightarrow p$	{p,q}	{p}
q	{r}	{r}
r	{s}	$\{\phi\}$
s*	(s)	{s}

Present	Next		Output
State	state		
	A=0	A=1	
Q1	Q1	Q2	0
Q2	Q1	Q3	0
Q3	Q1	Q3	1

Table 1 Table 2

Q5) a) What is ambiguous grammar? Show that the grammar below is ambiguous,& find the equivalent unambiguous grammar.[4]

$$E \rightarrow E + E|E*E|(E)|I,I \rightarrow a|b$$

b) Define Context free Grammar & give its Applications. [2]

c) Simplify the following grammar [4]

$$S \rightarrow 0A0|1B1|BB, A \rightarrow C, B \rightarrow S|A, C \rightarrow S| \in$$

OR

- **Q6)** a) Construct a DFA for the following left linear grammar $S \rightarrow B1 \mid A0 \mid C0, B \rightarrow B1 \mid 1, A \rightarrow A1 \mid B1 \mid C0 \mid 0, C \rightarrow A0$
 - b) Check whether the given grammar is in GNF. If not then find its equivalent GNF.

 [4]

 $S \rightarrow AA \mid a, A \rightarrow SS \mid b$

c) Define Concurrent Grammar. [2]

* * *