Total No. of Questions: 10	Total No.	of C	Duestions	:10
-----------------------------------	-----------	------	------------------	-----

P	3	6	5	3
_	\sim	v	\sim	$\boldsymbol{\smile}$

SEAT No. :	
------------	--

[Total No. of Pages :3

[4959]-1002 B.E. Civil

Transportation Engineering

(2012 Course) (Semester - I)

Time: 2.5 Hours [Max. Marks:70]

Instructions to the candidates:

- 1) Answer Q1 or Q2 Q3 or Q4 and Q5 or Q6 Q7 or Q8 Q9 or Q10.
- 2) Answer to the two sections should be written in separate books.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollies charts, electronics pocket calculator and steam tables is allowed.
- 5) Assume suitable data if necessary.
- 6) Neat diagrams must be drawn wherever necessary.
- **Q1)** a) Explain how master plan is prepared and the road development plan is phased. [5]
 - b) What are the various objectives of preliminary survey for highway alignment? State only the various steps in the conventional method. [5]

OR

- **Q2)** a) Explain in brief the salient features of Third twenty year road development plan 1981-2001. [5]
 - b) Calculate the absolute minimum and ruling minimum radius of horizontal curve for a design speed of 80 Kmph. [5]
- Q3) a) Write a short note on condition and collision diagram. [5]
 - b) Calculate the spacing of expansion joint from the following data: [5]

Maximum joint width = 2 cm

Temperature of laying concrete =20°C

Maximum Slab Temperature expected =55°C

Coefficient of thermal expansion of Concrete =10 X 10⁻⁶ per °C

OR

P.T.O.

Q4)	a)	The radius of a horizontal curve is 400 m, the total pavement	[5]
		Width at curve is 7.6m and the super elevation is 0.07. Design the	
		Transition curve length for a speed of 100 kmph. Assume	
		Pavement to be rotated about inner edge.	
	b)	Explain the CBR method of pavement design.	[5]
Q5)	a)	Explain in the brief the following: [2+2+2	=6]
		1) AileronI	
		2) Rudder	
		3) Elevator	
	b)	Explain the various surveys and data to be collected for airport selection. [4+2]	
	c)	Give different systems of classification of airport.	[4]
		OR	
Q6)	a)	What do you understand by the term airport capacity? What the fac which affect the airport capacity? [2+4]	
	b)	Explain the following terms: [3x2	=6]
		1) Apron.	
		2) Air Speed.	
		3) Runway.	
	c)	Write a short note on basic runway length.	[4]
Q7)	a)	What is the importance of hydraulic data in bridge design.	[4]
	b)	Describe the methodology involved in the use of rational method computation of maximum flood discharge from small catchments.	
	c)	Explain afflux. List and explain the different formulae used for estimatof afflux. [2+4]	
		OR	

2

[4959]-1002

Q8)	a)	Distinguish between alluvial and quasi-alluvial streams.	[2+2=4]		
	b)	A bridge need to be constructed across an alluvial stream having a discharge of 500 cumecs. Calculate the depth of maximum scour			
		when the bridge consists of:	[3+3=6]		
		1) Three spans of 15 m each.			
		2) Four spans of 30 m each.			
		Take $f = 1.10$.			
	c)	Discuss the direct method of design of flood discharge in sketches wherever necessary.	detail. Draw [4+2=6]		
Q9)	a)	Define Abutment. State the various types of abutments. A requirements of good Abutments.	lso State the [2+2+2=6]		
	b)	Mention any ten loads to be considered in the design of bri any one in brief	dge. Explain [4+2=6]		
	c)	Write a short note on Erection and Maintenance of Bridges	s. [6]		
		OR			
Q10) (a)	What are the causes of longitudinal forces in bridge? Expla	in in brief. [2+2+2=6]		
	b)	Define Bridge bearing. State the types of bearings? Why necessary in bridges.	Bearings are [2+2+2=6]		
	c)	Explain the following with a neat sketches:	[2+2+2=6]		
		1) Box Culvert.			
		2) Swing bridge.			

3) Suspension bridge.

