| <b>Total No. of Questions :6]</b> | <b>Total</b> | No. | of C | uestions | :6] |
|-----------------------------------|--------------|-----|------|----------|-----|
|-----------------------------------|--------------|-----|------|----------|-----|

[Total No. of Pages :2

**P76** 

OCT. -16/BE/Insem. - 130

**B.E.** (Electrical)

## RENEWABLE ENERGY SYSTEMS

(2012 Course) (Elective - I) (Semester - I)

Time: 1 Hour] [Max. Marks:30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data if necessary.
- **Q1)** a) Explain any one instrument used for measuring solar radiation. [6]
  - b) What are different solar radiation on tilted surface? State the expression for total flux falling on a tilted surface. [4]

OR

- Q2) a) List the different types of collectors. Explain any one in detail. [5]
  - b) Determine LAT corresponding to 13:30 h (IST) at (28° 35' N, 77° 12' E) on July '. The standard time is based on 82° 30' E. Given: Equation of time correction (minutes)

E = 9.87 sin 2B - 7.53 cos B-1.5sinB where B = 
$$(n-81) \left( \frac{360}{364} \right)$$
 [5]

- Q3) a) Draw equivalent ckt of pv cell. Hence plot electrical characteristics of silicon pv cell showing maximum power point for various solar irradiation levels.
  - b) A solar Pv module is operating at ambient temp of 45°C & 35°C under solar irradiation of 900 W/m² and 800 W/m² respectively. What will be the temperature of the module. Given: Constant k = 0.025 [5]

OR

| <b>Q4</b> ) | a) | Define following parameters for solar cell-                                                                 |     |  |  |  |  |
|-------------|----|-------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| ~           | ,  | i) Short circuit current                                                                                    |     |  |  |  |  |
|             |    | ii) Open ckt voltage                                                                                        |     |  |  |  |  |
|             |    | iii) Fill Factor                                                                                            |     |  |  |  |  |
|             |    | iv) Efficiency of solar cell                                                                                |     |  |  |  |  |
|             |    | State the relationship between these factors.                                                               | [6] |  |  |  |  |
|             | b) | Show the components of Pv system with energy storage device. A                                              |     |  |  |  |  |
|             | 0) | draw energy flow diagram for this system. Write the broad steps of                                          |     |  |  |  |  |
|             |    | design for this configuration.                                                                              | [4] |  |  |  |  |
|             |    |                                                                                                             |     |  |  |  |  |
| Q5)         | a) | State the following terms with expressions.                                                                 |     |  |  |  |  |
|             |    | i) Power contained in wind                                                                                  |     |  |  |  |  |
|             |    | ii) Power coefficient                                                                                       |     |  |  |  |  |
|             |    | iii) Torque acting on turbine                                                                               |     |  |  |  |  |
|             |    | iv) Tip -Speed ratio                                                                                        |     |  |  |  |  |
|             |    | v) Wind turbine efficiency                                                                                  | [5] |  |  |  |  |
|             | b) | Find the diameter of a wind turbine to generate 6 kw at a wind speed of 9 m/s and a rotor speed of 120 rpm. |     |  |  |  |  |
|             |    | Assume power coefficient =0.4, efficiency                                                                   |     |  |  |  |  |
|             |    | of mechanical transmission =0.9, efficiency                                                                 |     |  |  |  |  |
|             |    | of electrical transmission =0.9                                                                             | [5] |  |  |  |  |
|             |    | of electrical transmission —0.9                                                                             |     |  |  |  |  |
|             |    | OR                                                                                                          |     |  |  |  |  |
| <b>Q6</b> ) | a) | State different types of speed control strategies for wind turbine.                                         | [5] |  |  |  |  |
|             | b) | What are the factors affecting the design of wind turbine?                                                  | [5] |  |  |  |  |
|             |    |                                                                                                             |     |  |  |  |  |
|             |    | x x x                                                                                                       |     |  |  |  |  |

