Total No. of Questions : 8]		SEAT No. :
P3074	[5154]-640	[Total No. of Pages : 2
	B.E. (Electrical)	
EH	VAC TRANSMISSIO	ON

(2012 Course) (Semester - I) (403144) (End Semester) (Elective - II)

Instructions to the candidates:

Time: 2½ Hours]

- 1) Answer all questions.
- 2) Answser Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.
- 6) Use of calculator is allowed.
- Q1) a) Prove that a one 750 KV line power handling capacity of a.c. transmission line carry as much power as four 400 KV circuits for equal distance of transmission.[8]
 - b) Derive expression for inductance of multi conductor lines & state Maxwells coefficients. [8]
 - c) The field strength on the surface of a sphere of 1 cm radius is equal to the corona inception gradient in air of 30 KV/cm. Find the charge on the sphere. [4]

OR

- Q2) a) Write note on dampers and spacers Draw the neat sketches. [8]
 - b) Explain the field of a sphere gap. [8]
 - c) Calculate Geometric Mean Radius (GMR) of a bundled conductor for 400kV AC line having two sub conductors, each of 1.59 cm radius and sub conductor spacing 45 cm. [4]
- Q3) a) Discuss effect of power frequency magnetic fields on human health and specify permissible limits.[9]
 - b) Evaluate the horizontal, vertical and total value of electrostatic field components near the single circuit transmission line, which are energized by three phase voltages. [9]

OR

P.T.O.

IMax. Marks: 70

Q4) a) Compute the r.m.s. value of ground level electrostatics field of a 400 kV Line at its maximum operating voltage of 420 kV given: single circuit configuration H = 13m, S = 12m, conductor 2*3.18cm diameter, B = 45.72cm, N = 2, Assume Di = Di. [9]

- b) Derive the expression for voltages induced in the conductors of un energized circuit of double circuit three phase line. [9]
- Q5) a) With a simple block diagram, explain the Audible noise measuring circuit in Extra high voltage ac lines.[8]
 - b) Explain the corona formation and methods to reduce the corona effects. [8]

OR

- **Q6)** a) From charge voltage diagram derive an expression for corona loss for ac voltage of conductor and compare it with Ryan Hen line formula. [8]
 - b) Explain the quantities on which the Audible noise level depends for the Extra high voltage ac lines. [8]
- Q7) a) State and explain at least four factors to be considered in the design of ehv lines based upon the steady state limits. Also state their limiting value.
 - b) Biref, line insulation design based upon transient over voltages. [8]

OR

- **Q8)** a) Explain in detail properties of cable insulation materials. [8]
 - b) Define tan δ loss factor & derive an expression for insulation resistance of a cable. [8]

