Total No. of Questions: 11]			SEAT No.:	
P19	68		[Total No. of Pages :	2
		[4859]-102	8	
		B.E. (Electrical) (Sen	nester - I)	
		Special Purpose M	,	
		(Elective - I(a)) (201		
Time	: 2.3	0 Hours]	= -	70
Instr	uctio	ns to the candidates:		
	<i>1</i>)	All questions are compulsory.		
	2)	Neat diagrams must be drawn wherever	er necessary.	
	<i>3</i>)	Figures to the right indicate full marks	s.	
	<i>4</i>)	Use of logarithmic tables, slide rules calculator and steam tables is allowed.	·	eı
	<i>5</i>)	Assume suitable data if necessary.		
Q 1)	How	to calculate torque from energy store	ed in magnetic circuit? ['	7]
		OR		
Q 2)	_	lain process of calculation of torque nanent magnets.		1g 7]
Q3)	_	lain characteristics features of brushles n permanent magnet synchronous mac	•	nt 7]
		OR		
Q4)	Explain different constructions of PMSM machines. Which configuration i most common? [7			
Q 5)	Exp	lain in detailed abc to αβ transformatio	on. Also state assumptions made.[6	6]
		OR		
Q6)	Exp	lain block diagram of field oriented co	ontrol of PMSM machine. [0	6]
Q 7)	a)	Explain different configurations of rel	luctance machine. [8	8]
	b)	Derive torque equation for generaliz State the assumptions made in deriva	•	or. 8]

P.T.O.

- Q8) a) Explain torque production in plain reluctance motor. Also explain process of pull into synchronism. Draw relevant characteristics.[8]
 - b) Explain switched reluctance drive. Draw necessary waveforms. [8]
- **Q9**) a) Explain with neat diagrams, different types of stepper motors. [9]
 - b) Derive equation for mechanical torque produced in VRM stepping motor. [9]

OR

- Q10) a) With block diagram explain control of stepping motor by using micro stepping method. [9]
 - b) Explain steady state operation of stepping motor by using constant current drive. [9]
- Q11) Solve any two of the following

[16]

- a) Explain concept of magnetic levitation. How it is useful in operation of linear induction machine applications.
- b) Explain various important characteristics of linear induction machine.
- c) Discuss various applications of linear induction machine.

[4859]-1028