Total No.	of Questions	: 8]
-----------	--------------	------

SEAT No.:	
-----------	--

P3135

[Total No. of Pages: 3

[5354]-623 B.E. (Electrical) CONTROL SYSTEM - II (2012 Pattern)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- Q1) a) Explain in detail design procedure of lead compensator. [8]
 - b) A system is represented by the state model. [6]

$$\dot{\mathbf{X}} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u, \quad \mathbf{Y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{X}.$$

Determine controllability & observability of above using Kalman's test.

c) Define the terms:

[6]

- i) State variable
- ii) State vector
- iii) State space
- iv) State trajectory.

OR

Q2) a) A system is represented by a state model

$$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \mathbf{u}, \quad \mathbf{Y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{X}$$
. It is required to place the

poles of the system at $S=-3\pm j4$. Design a suitable state feedback gain matrix 'K' using transformation matrix method. [8]

P.T.O.

b) Solve the homogeneuous state equation, given that

$$\dot{\mathbf{X}} = \begin{bmatrix} -4 & 1 \\ -3 & 0 \end{bmatrix} \mathbf{X} \qquad \mathbf{Y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{X} \qquad \mathbf{X}_{o} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{T}$$

- c) What is lag compensator? Explain with the help of pole-zero plot, TF & circuit diagram. [4]
- Q3) a) Define the terms phase trajectory and phase portrait and explain the procedure of construction of phase trajectory using delta method. [10]
 - b) With suitable sketches write a short note on stability Analysis of a non linear system using describing function method. [8]

OR

- Q4) a) In a unity feedback system, an ideal relay with output \pm 2 units is connected in cascade with $G(s) = \frac{10}{s(s+3)(s+4)}$ Determine the amplitude & frequency of limit cycle, if it exists, by describing function method.[10]
 - b) With suitable sketches show various types of singular points. Also mention the location of closed loop poles in each case. [8]
- **Q5)** a) What is ZOH? Derive its transfer function. [8]
 - b) Obtain Z transform of following sequences. [8]
 - i) $f(k) = \{2, 4, 5, 7, 3\}$
 - ii) $f(k) = \left(\frac{1}{2}\right)^k u(k)$

Also state ROC in both cases.

OR

[5354]-623

- **Q6)** a) Explain with neat diagram process of analog to digital conversion of a signal. [8]
 - b) Solve following difference equation. [8]

$$x(k+2) - 3x(k+1) + 2x(k) = u(k)$$

given that x(0) = 0 and x(1) = 1

- **Q7)** a) What is pulse transfer function? Write general procedure to obtain pulse transfer function. [8]
 - b) Obtain the cascade realization of the system described by [8]

$$D(z) = \frac{z^3 + 3z^2 + 7z + 5}{z^3 + 3z^2 + 9z + 14}.$$

OR

Q8) a) Obtain the pulse transfer function of following closed loop system. [8]

b) Obtain parallel realization of the system described by

$$D(z) = \frac{z^2 + 11z + 15}{z^2 + 7z + 12}.$$
 [8]

