Total No.	of Questions	: 8]
-----------	--------------	------

SEAT No.:

P3236

[Total No. of Pages: 3

[4859] - 1027

B.E. (Electrical)

CONTROL SYSTEMS-II

(2012 Pattern) (End Sem.)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Design a lag compensator for unity feedback system with

$$G(s) = \frac{20K}{s(s+1)(s+4)}$$
 to meet following specifications. [10]

i) $K_{y} = 8/\text{sec}$

- ii) Phase Margin = 42° .
- b) Obtain the state model representation from system differential equation by using phase variables. [6]

$$\frac{d^3y(t)}{dt^3} + 5\frac{d^2y(t)}{dt^2} + 10\frac{dy(t)}{dt} + 20y(t) = 2u(t)$$

c) Explain the effect of pole zero cancellation on the controllability of system with suitable example. [4]

OR

Q2) a) A system is given by
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

It is desired to place close loop poles at -2, $1 \pm j2$. Obtain state feedback gain matrix. [10]

P.T.O.

b) For a given system,
$$\dot{x} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
, $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$, $x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Obtain $x(t)$ for unit step input. [6]

- c) Draw circuit diagram of op-amp based lead/lag compensator, write transfer function and draw pole zero plot. [4]
- Q3) a) In a unity feedback system an ideal relay with output equal to \pm 1 unit is connected in cascade with $G(s) = \frac{20}{s(s+1)(s+3)}$ Determine amplitude and frequency of limit cycle if it exists by describing function method. [10]
 - b) Explain any one peculiar behavior of nonlinear system: [6]
 - i) Jump resonance
 - ii) Limit cycle
 - iii) Sub-harmonic oscillations

OR

Q4) a) A linear second order system is described by equation. [10]
$$\ddot{e} + 2\xi \omega_n \dot{e} + \omega_n^2 e = 0$$
 where, $\xi = 0.3, \omega_n = 1$ rad/sec, $e(0) = 2$, $\dot{e}(0) = 0$. Construct the phase trajectory using method of isoclines.

b) Explain different types of singular points of the phase trajectories. [6]

[6]

- Q5) a) Draw the block diagram of digital control system & explain the function of each block in short.[10]
 - b) Determine inverse Z transform of

i)
$$\frac{z^2 + 3z}{z^2 + 3z + 2}$$

ii)
$$\frac{(1-e^{-3T})z}{(z-1)(z-e^{-3T})}$$

OR

[4859] - 1027

2

- Q6) a) Explain the sampling and reconstruction process, State the sampling theorem and give its importance. [10]
 - b) Solve the following equation by using z-transform method. [6] x(k+2) + 5x(k+1) + 6x(k) = 0 where x(0); x(1) = 1
- Q7) a) Define Pulse Transfer Function and obtain the pulse transfer function of two systems in cascade with sampler in between.[8]
 - b) Obtain the direct and cascade realization of [10]

$$D(z) = \frac{z^2 + 5z + 2}{z^3 + 6z^2 + 4z + 1}$$

OR

- **Q8**) a) Write a short note on Digital PID Controller.
 - b) Obtain the closed loop pulse transfer function of the following system. [10]

[8]
