\square

B.E. (Electrical)

CONTROL SYSTEM-II
(Semester-I) (2012 Course) (403145)

Time: $2^{1 ⁄ 12}$ Hours]

[Max. Marks: 70
Instructions to the candidates:
Answer any one question from each pair of questions: Q1 \& Q2, Q3 \& Q4, Q5 \& Q6, and Q7 \& Q8.

Q1) a) Draw important electrical networks used practically for the compensation for the control systems?
b) A unity feedback system has an open loop transfer function.
$G(\mathrm{~s})=\frac{0.025}{s(1+0.5 \mathrm{~s})(1+0.05 \mathrm{~s})}$ Design a suitable Lag compensator so that phase margin is 40° and $\mathrm{Kv}=20 / \mathrm{sec}$.

OR
Q2) a) Define and explain the terms: Eigen values, Eigen vectors, Diagonalisation and Vander Monde Matrix.
b) Determine the state controllability and observability of the following system:

$$
\mathrm{A}=\left[\begin{array}{ccc}
-3 & 1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] ; \mathrm{B}=\left[\begin{array}{cc}
0 & 1 \\
0 & 0 \\
2 & 1
\end{array}\right] ; \mathrm{C}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Q3) a) State and explain various types of non linearities in control systems.[8]
b) A unity feedback control system with $G(s)=\frac{1}{s(s+1)(s+10)}$ includes ideal relay with output equal to ∓ 2 unit. Determine the amplitude and frequency of limit cycle by Describing function method.

OR

Q4) a) Explain Jump resonance and frequency entrainment for non-linear system.
b) Derive the Describing function for Ideal Relay.

Q5) a) Draw the block diagram of digital control system and explain the function of each block.
[8]
b) Find the Z-transform of the sequence:
i) $\mathrm{X}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \operatorname{Cos} \omega \mathrm{t}$
ii) $\quad \mathrm{X}(\mathrm{n})=(\mathrm{a})^{\mathrm{n}} \mathrm{u}(\mathrm{n}-1)$

OR

Q6) a) Explain important properties of Z-transform.
b) Find the inverse Z-transform of the function
i) $X(z)=\frac{10 Z}{(Z-1)(Z-0.2)}$
ii) $\quad X(z)=\frac{Z}{(Z-1)(Z-2)}$

Q7) a) Define pulse Transfer Function. State general procedure for obtaining pulse Transfer Function.
b) Obtain Direct realization of
$D(z)=\frac{Z^{2}+5 Z+2}{Z^{3}+6 Z^{2}+4 Z+1}$
OR

Q8) a) Write a short note on Digital PID Controller.
[8]
b) Obtain Cascade realization of
$\mathrm{D}(\mathrm{z})=\frac{Z^{3}+3 Z^{2}+7 Z+5}{Z^{3}+3 Z^{2}+9 Z+14}$

