Total No.	of Questions	:	8]
-----------	--------------	---	------------

SEAT No.:		
-----------	--	--

P3600 [Total No. of Pages : 2

[4959]-1075

B.E. (Electrical Engineering)

HVDC AND FACTS

(2012 Pattern) (Elective - III(b))

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- Q1) a) Explain rectifier operation in HVDC systems with ignition delay angle and commutation overlap angle. Derive equations for Δ Vd and Vd.[10]
 - b) What is HVDC Light System? What are the characteristics features of HVDC light system? Explain Control and Power transfer characteristics of VSC based HVDC system. [10]

OR

- Q2) a) Explain inverter operation in HVDC systems with extinction angle and overlap angle. Derive necessary equations. [10]
 - b) Explain protection against over voltages in HVDC system. Explain advantages of Single wire ground return (SWGR) system and also state why negative pole is preferred in SWGR systems. [10]
- Q3) a) With suitable diagram explain DC link converter topologies. [8]
 - b) Explain different mechanisms used for controlling harmonic generation in converter used in HVDC systems. [8]

OR

Q4) a) Explain AC controller based structures.

- [8]
- b) i) Explain operation of back to back converters.
 - ii) Compare current source converter and voltage source converters.[8]

P.T.O.

Q5)	a)	Draw a practical structure of TCSC and explain principle of operation and different operating modes of TCSC. [9]
	b)	i) In TCSC, reactance of TCR branch is twice the capacitive reactance. Compute X_{TCSC}/X_{C} and I_{TCR}/I_{L} . Also specify whether TCSC operation is Capacitive or inductive with justification. [4]
		ii) Compare STATCOM with SVC. [5]
		OR
Q6)	a)	Explain principle of Operation of STATCOM. Draw relevant phasor diagrams. [9]
	b)	 i) In TCSC, reactance of TCR branch is half the capacitive reactance. Compute X_{TCSC}/X_C and I_{TCR}/I_L. Also specify whether TCSC operation is capacitive or inductive with justification. [4]
		ii) Explain Applications of SVC. [5]
Q 7)	a)	With neat structure explain principle of operation of UPFC. [8]
	b)	Explain relevant phasor diagrams illustrating transmission control capabilities of UPFC. [8]
		OR
Q 8)	a)	Explain the overall control structure of UPFC. [8]

* * *

b) Explain Power flow studies in UPFC embedded systems and operational

[8]

constraints.