Total No.	of Questions	:	6]	
-----------	--------------	---	----	--

P36

SEAT No.:	
-----------	--

[Total No. of Pages : 2

APR-17/B.E./Insem. - 40 B.E. (Electrical) DIGITAL CONTROL SYSTEMS (2012 Pattern) (Elective - III (c))

Time:1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables, electronic pocket calculator is allowed.
- 5) Assume suitable data, if necessary
- **Q1)** a) Check whether the following systems are

[5]

- i) Static or Dynamic
- ii) Linear or non-Linear
- iii) Time invariant or Time variant
- 1) $Y(n) = e^{x(n)}$
- 2) Y(n) = x(2n)
- b) Explain frequency domain characteristics of first order hold. [5]

OR

Q2) a) For a given sequence: $x(n) = \{4, 3, 0, 1, 2\}$

[5]

1

- i) Delay the sequence by 3 samples.
- ii) Fold & advance the sequence by 2 samples.
- iii) Downscale the sequence by time 2 samples.
- iv) Up-scale the sequence by amplitude scales.
- v) Carry out amplitude downscaling.
- b) Explain with neat diagram the various standard discrete test signals used in digital control system. [5]
- **Q3)** a) Show how a mapping of left half of the S-plane is done into the Z-plane.

|5|

b) Examine the stability of the system by Bilinear transformation method, whose characteristics equation is

$$F(z) = Z^3 - 1.3Z^2 - 0.08Z + 0.24 = 0$$
 [5]

OR

P.T.O.

- **Q4)** a) Explain Bilinear Transformation & its use in stability investigation of discrete time system. [5]
 - b) Describe design procedure of digital lead compensator using bode plot for discrete time system. [5]
- **Q5)** a) Derive the solution of a non-Homogeneous state equation of a discrete time system from first Principles. [5]
 - b) Using Cayley-Hamilton Theorem obtain the state transition matrix of the discrete time system. [5]

$$x(k+1) = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} x(k), \text{ Take } x(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

OR

Q6) a) Consider the system defined by

[5]

$$\frac{Y(z)}{U(z)} = \frac{3z^2 - 11z}{z^3 - 6z^2 + 11z - 6}$$

Determine State space representation in Controllable canonical form.

b) Discuss the various methods used for STM.

[5]

$$\nabla \nabla \nabla \nabla$$