Total No. o	f Questions	:	8]	
-------------	-------------	---	----	--

SEAT No. :	
------------	--

P3986

[4959]-1076

[Total No. of Pages: 3

B.E. (Electrical)

c - DIGITAL CONTROL SYSTEMS

(Semester - II) (2012 Course) (Elective - III) (End-Sem.)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Attempt Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right side indicate full marks.
- **Q1)** a) Check whether the following systems are

[8]

- i) Static or Dynamic
- ii) Linear or non-Linear
- iii) Time invariant or Time variant
 - 1) Y(n) = Cos[x(n)]
 - 2) Y(n) = x(2n)
- b) Examine the stability of the following characteristic equation by Jury's test.

$$P(Z) = Z^4 - 0.6Z^3 - 0.81Z^2 + 0.67Z - 0.12 = 0.$$
 [8]

c) Derive the solution of a non-Homogeneous state equation of a discrete time system from first Principles. [4]

OR

Q2) a) For a given sequence :
$$x(n) = \{4, 3, 0, 1, 2\}$$

- i) Delay the sequence by 3 samples.
- ii) Fold & advance the sequence by 2 samples.
- iii) Downscale the sequence by time 2 samples.
- iv) Up-scale the sequence by amplitude scales.

P.T.O.

- b) Describe design procedure of digital lead compensator using bode plot for discrete time system. [8]
- c) Discuss the various methods used for computation of state transition matrix (STM) $\Phi(k)$ From the given state difference equation x(k + 1) = Gx(k) + Hu(k). [8]

Q3) a) Given

$$x(k+1) = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix} x(k) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} u(k) & y(k) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} x(k)$$
 [10]

Determine controllability & observability of the system.

b) What is principle of duality? Explain the effect of pole-zero cancellation on controllability & Observability. [6]

OR

Q4) a) For the system having

$$G = \begin{pmatrix} 0 & 1 \\ -0.16 & -1 \end{pmatrix}; \quad H = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; C = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

Determine a suitable gain matrix K such that the system will have Eigen values at Z = 0.5 + j0.5, Z = 0.5 - j0.5. [10]

- b) Explain full order Observer with proper block diagram. [6]
- **Q5)** a) Consider the system defined by

$$\frac{Y(z)}{U(z)} = \frac{3z^2 - 11z}{z^3 - 6z^2 + 11z - 6}$$

Determine State space representation in Controllable canonical form & Observable canonical form. [10]

[4959]- 1076

b) Consider the pulse transfer function of discrete time system given as

$$\frac{Y(z)}{U(z)} = \frac{b_0 z^n + b_1 z^{n-1} + b_2 z^{n-2} + \dots + \dots + b_n}{z^n + a_1 z^{n-1} + a_2 z_{n-2} + \dots + \dots + a_n}$$

Derive its Jordan canonical form.

[6]

OR

Q6) a) Consider the pulse transfer function of discrete time system given as

$$\frac{Y(z)}{U(z)} = \frac{b_0 z^n + b_1 z^{n-1} + b_2 z^{n-2} + \dots + \dots + b_n}{z^n + a_1 z^{n-1} + a_2 z_{n-2} + \dots + \dots + a_n}$$

Derive its Controllable canonical form & Observable canonical form.[10]

- b) Explain Eulers forward & backward method with suitable example. [6]
- **Q7)** a) Explain Hybrid system simulation with block diagram & their application. [10]
 - b) Explain Computer program structure for simulation of discrete time control system with algorithm & flow charts. [8]

OR

- **Q8)** a) Draw a neat block diagram of digital position control scheme and Explain the function of each block. [10]
 - b) Explain Stepper motor control with proper block diagram. [8]

