Seat	
No.	

[4956]-104

F.E. EXAMINATION, 2016 BASIC ELECTRICAL ENGINEERING (2012 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Solve Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Use of electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) What is insulation resistance? Obtain an expression for insulation resistance of single core cable. [6]
 - (b) If a coil of 150 turns is linked with a flux of 0.01 wb when carring a current of 10A, calculate
 - (i) Self inductance of the coil
 - (ii) If this current is uniformly reversed in 0.1 sec, calculate induced emf.
 - (iii) If a second coil of 100 turns is uniformly wound over the first coil, find mutual inductance between them.[6]

P.T.O.

- **2.** (a) Obtain the expression for co-efficient of coupling between two magnetically coupled coils. [6]
 - (b) Find the current flowing at the instant of switching 40 W Lamp on 240 V supply. Given that working temperature of filament is 2000°C and temp. co-efficient of resistance of filament at 15°C is 0.005 OC⁻¹.
- **3.** (a) Obtain the expression for composite capacitor having three dielectric materials. [6]
 - (b) Obtain the expression for r.m.s. value of current interms of its peak value. [6]

Or

- 4. (a) Draw the neat connection diagram and explain the procedure for finding voltage regulation and efficiency by direct loading method for transformer having ratings 1 KVA, 230/115 V, 1-ph, 50 H₂. Also write the proper ranges of meters. [6]
 - (b) A 50 H_2 alternating current having rms value 10A has instanteneous value of -7.07A at t = 0. Write down the equation for current and sketch the waveform stating all currents and phase angle. [6]

[4956]-104

5.	(a)	What is series resonance? Obtain the expression for resona	ant	
ο.	(<i>a</i>)			
		frequency. Also draw the phasor diagram.	[6]	
	(<i>b</i>)	Three identical impedances each of $6 + j8 \Omega$ are connec	ted	
		in delta across 3-ph, 400 V, 50 Hz ac supply. Calculate	9	
		(i) Line current		
		(ii) Power factor		
		(iii) Active power		
		(iv) Reactive power.	[7]	
		Or		
6.	(a)	Define and explain following terms.		
		(i) Admittance		
		(ii) Phase sequence		
		(iii) Balanced and unbalanced load.	[6]	
	(<i>b</i>)	Find the expression for current when $v = 282.84 \sin(314 t)$	V	
		is applied to coil having resistance 10 ohm and inductar	nce	
		0.1 H. Also calculate the power consumed. [7]		
		SECTION II		
7.	(a)	State and explain Kirchhoff's Laws.	[6]	
[4956	3]-104	3 P.T	.О.	

(b) Find the resistance between B and C. All the resistance values are in ohm. [7]

8. (a) State and explain the Verins theorem.

[6]

(b) Using Superposition Theorem, find current flowing through AB.
All resistance values are in ohm. [7]

[4956]-104