Total No. of Questions: 8]

SEAT No. :

Total No. of Pages: 3

P547

[4456] - 104

BASIC ELECTRICAL ENGINEERING F.E. (Semester - I & II)

(2012 Course)

[Max. Marks: 50

Instructions to the candidates:

- Attempt Q.No. 1 or 2, Q.No. 3 or 4, Q.No. 5 or 6, Q.No. 7 or 8
- 2) Figures to the right indicate full marks.
- 3) Use of non-programmable pocket size scientific calculator is permitted.
- Neat diagram must be drawn wherever necessary.
- 5 4 Assume suitable data, if necessary.
- QI) a) Define Insulation Resistance and derive expression for it of a Cable.
- 6 and 8 x $10^{12} \Omega$ - m respectively. Calculate resistance of conductor and as 5 cm. The resistivity of conductor and insulator are 1.73 x $10^{-8}\,\Omega$ – m A single core cable has its conductor diameter as 2 cm and outer diameter insulation for a cable of 100 meter. [6]

Q2) a) Derive an expression for Energy stored in a magnetic field

[6]

- 6 wound with 600 turns wound uniformly. The relative permeability of iron in it. It has circular cross section with area of 5cm². It carries a coil is 580. If the coil carries a current of 2 amp. Find the Flux in air gap. An iron ring of mean circumference of 50 cm has an airgap of 2mm cut [6]
- Q3) a) Derive an expression of Average value of an alternating sinusoidal current. [6]
- 6 connected across a 200V, 50Hz supply. Find An inductive coil, having negligible resistance and 0.1 H inductance, is [6]
- Inductive reactance

E)

RMS value of current drawn. State equations for voltage & current.

P.T.O.

Q4) a) Compare core type and shell type transformer construction.

[6]

OR

6 transformer efficiency at half load 0.8 lagging p.f. The Iron Losses are resistance of 1.8 $\,\Omega$ and a secondary resistance of 0.02 $\,\Omega$. Calculate the A 25kVA, 2200/220V 50Hz single phase transformer has a primary

Q5) a) A circuit, consisting of resistance of 20 $\Omega\,$ and inductance of 0.1H in series, is connected across single phase 220V, 50Hz supply

Calculate: i) Current drawn

E) p.f. and

E) Power consumed by ckt.

Define:

Impedance and

<u>b</u>

Ξ; Admittance of circuit. Sketch the impedance & admittance triangles

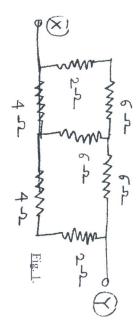
OR.

Q6) a) Three coils each of 5Ω resistance and 6Ω inductive reactance are connected in Delta across 3 phase, 440V, 50Hz, A.C. Supply. Calculate current drawn, p.f. of system and power consumed by circuit.

5 that maximum current is drawn at frequency of 50Hz. Find also voltage A coil of 2Ω resistance and 0.01H inductance is connected in series with a capacitor across 200V supply. What must be capacitance in order across capacitance [6]

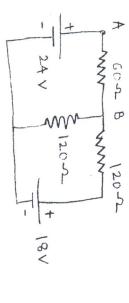
State and Explain Kirchhoff's laws.

Q7) a)


00

[4456]-104

6 7 www.manaresults.co.in


b) Calculate the equivalent resistance between terminals (X) and (Y) for the circuit shown in Fig. 1.

5

Q8) a) Apply Thevenin's theorem to calculate current flowing in branch $\underline{A-B}$ as shown in Fig. 2. [8]

OR

b) State and explain Superposition Theorem.

5