UNIVERSITY OF PUNE
 [4361-108]
 F.E. Examination 2013
 Engineering Mathematics -II
 (2012 pattern)

Time-Two hours
[Total No. of Question=8]

Instructions:

(1)Attempt 4 questions :Q. 1 or $\mathrm{Q} .2, \mathrm{Q} .3$ or $\mathrm{Q} .4, \mathrm{Q} .5$ or $\mathrm{Q} .6, \mathrm{Q} .7$ or Q .8 .
(2)Neat diagrams must be drawn whereever necessary.
(3)Figures to the right indicate full marks.
(4)Use of electronic non-programmable calculator is allowed.
(5)Assume suitable data whenever necessary.

SECTION-I

Q. 1 (a)Solve the following differential equations.
(i) $\left(x^{4} e^{x}-2 \mathrm{mxy}^{2}\right) d x+2 \mathrm{mx}^{2} y d y=0$
(ii) $\left(\tan \frac{y}{x}-\frac{y}{x} \sec ^{2} \frac{y}{x}\right) d x+\sec ^{2} \frac{y}{x} d y=0$
(b)A constant electromotive force E volts is applied to a circuit containing a constant resistance R ohms in series and a constant inductance L henries. If the initial current is zero, show that the current builds up to half its theoretical maximum in $\frac{L \log 2}{R}$ seconds.

OR

Q. 2 (a)Solve $\left[\log \left(x^{2}+y^{2}\right)+\frac{2 \mathrm{x}^{2}}{x^{2}+y^{2}}\right] d x+\frac{2 \mathrm{xy}}{x^{2}+y^{2}} d y=0$.
(b) Solve the following:-
(1)A particle is moving in a straight line with an acceleration $k\left[x+\frac{a^{4}}{x^{3}}\right]$ directed towards origin. If it starts from rest at a distance 'a' from the origin, prove that it will arrive at origin at the end of time $\frac{\pi}{4 \sqrt{k}}$.
(2)A pipe 10 cm in diameter contains steam at $100^{\circ} \mathrm{C}$. It is covered with asbestos, 5 cm thick,for which $\mathrm{k}=0.0006$ and the outside surface is at $30^{\circ} \mathrm{C}$.Find the amount of heat lost per hour from a meter long pipe.
Q. 3 (a)Express $f(x)=\pi^{2}-x^{2},-\pi \leq x \leq \pi$ as a fourier series, where $f(x)=f(x+2 \pi)$.
(b)Evaluate $\int_{0}^{\infty} \frac{x^{8}-x^{14}}{(1+x)^{24}} d x$.
(c)Trace the curve (Any one)
(i) $y^{2}=x^{2}(1-x)$
(ii) $r=2 \sin 3 \theta$

OR

Q. 4 (a)show that the length of an arc of the curve

$$
\begin{equation*}
x=\log (\sec \theta+\tan \theta)-\sin \theta, \quad y=\cos \theta \text { from } \theta=0 \text { to } \theta=t \text { is } \log (\sec t) . \tag{4}
\end{equation*}
$$

(b)Evaluate: $\int_{0}^{\pi} x \sin ^{5} x \cos ^{2} x d x$.
(c)Evaluate $\int_{0}^{1}\left[\frac{x^{m}-1}{\log x}\right] d x$.
Q. 5 (a)Find the equation of the sphere, having its center on the plane $4 x-5 y-z=3$ and passing through the circle. $x^{2}+y^{2}+z^{2}-2 \mathrm{x}-3 \mathrm{y}+4 \mathrm{z}+8=0, x-2 \mathrm{y}+z=8$.
(b)Find the equation of a right circular cone, having vertex at the point $(0,0,3)$ and passing through the circle $x^{2}+y^{2}=16, z=0$.
(c) Find the equation of a right circular cylinder of radius 2 , whose axis passes through the point $(1,1,-2)$ and has direction cosines proportional to $2,1,2$.

OR

Q. 6 (a) Find the equation of the sphere which is tangential to the plane $4 x-3 y+6 z-35=0$ at $(2,-1,4)$ and passing through the point $(2,-1,-2)$.
(b) Find the equation of a right circular cone with vertex at origin,the line $x=y=2 z$ as the axis and semi-vertical angle 30°.
(c) Find the equation of a right circular cylinder whose axis is

$$
\begin{equation*}
2(x-1)=y+2=z \text { and radius is } 4 . \tag{4}
\end{equation*}
$$

Q. 7 Solve any two:
(a)Evaluate $\int_{0}^{a} \int_{y^{2} / a}^{y} \frac{y d x d y}{(a-x) \sqrt{a x-y^{2}}}$
(b)Evaluate $\iint_{V} \int \sqrt{x^{2}+y^{2}} d x d y d z$, where V is bounded by the surface

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \quad, \quad \mathrm{z} \geq 0 \text { and the plane } \mathrm{z}=1 \tag{6}
\end{equation*}
$$

(c) Find the Moment of Inertia (M.I) about the line $\theta=\frac{\pi}{2}$ of the area enclosed by the curve $r=a(1+\cos \theta)$.

OR

Q. 8 Solve any two:
(a)Find by double integration the area between the curve $y^{2} x=4 \mathrm{a}^{2}(2 \mathrm{a}-x)$ and its asymptote.
(b)Find the volume of the cylinder $x^{2}+y^{2}=2 \mathrm{ax}$ intercepted between the paraboloid $x^{2}+y^{2}=2$ az and xoy - plane.
(c)Find the centre of gravity (C.G.)of one loop of the curve $r=a \sin 2 \theta$.

