Total No.	of Questions	:	8]	
-----------	--------------	---	----	--

Total	No.	of	Questions	:	8]	

P2019

SEAT No.:		_
[Total	No. of Pages : 3	3

F.E. (Semester - II) **ENGINEERING MATHEMATICS-II** (2012 Course)

Time: 2 Hours] [Max. Marks: 50

Instructions to the candidates:

- Attempt 4 questions: Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- Neat diagrams must be drawn wherever necessary. 2)
- 3) Figures to the right indicate full marks.
- Use of electronic non-programmable calculattor is allowed.
- Assume suitable data whenever necessary.
- *Q1)* a) Solve the following

[8]

$$i) \qquad \frac{dy}{dx} = \frac{x^2 + y^2 + 1}{2xy}$$

ii)
$$(1-x^2)\frac{dy}{dx} = 1 + xy$$

b) An electric circuit contains an inductance of 0.5 henries and a resistance of 100 ohms in series with an e.m.f. of 20 volts. Find the current at any time t, if it is zero at t = 0. [4]

OR

Q2) a) Solve: [4]

$$(2x+3y-1)dx = (6x+9y+6)dy$$

b) Solve the following:

[8]

A bullet is fired into sand tank, its retardation is proportional to square root of its velocity. Show that the bullet will come to rest in

time
$$\frac{2\sqrt{v}}{k}$$
, where V is initial velocity.

A pipe 20 cm in diameter contains steam at 150°C and is protected ii) with a covering 5 cm thick for which k = 0.0025. If the temperature of the outer surface of the covering is 40°C, find the temperature half-way through the covering under steady state conditions.

P.T.O.

Q3) a) Find the half range cosine series for the function $F(x) = x - x^2, 0 \le x \le 1$ [5]

b) Evaluate
$$\int_{2}^{5} (x-2)^{3} (5-x)^{2} dx$$
 [3]

- c) Trace the curve (Any One) [4]
 - i) $x = a(t + \sin t), y = a(1 \cos t)$
 - ii) $x^2y^2 = a^2(y^2 x^2)$

OR

Q4) a) If
$$I_n = \int_0^\infty e^{-x} \sin^n x \, dx$$
 obtain the relation between I_n and I_{n-2} [4]

b) Show that
$$\int_{a}^{b} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2} [erf(b) - erf(a)]$$
 [4]

- c) Find the arclength of one loop of Lemniscate $r^2 = a^2 \cos 2\theta$ [4]
- **Q5)** a) Find the equation of right circular cylinder of radius a, whose axis passes through the origin and makes equal angles with the coordinate axes. [4]
 - b) Lines are drawn from the origin with direction co-sines proportional to (1,2,2), (2,3,6) (3,4,12). Find direction co-sines of the axis of right circular cone through them, and prove that the semivertical angle of cone is

$$\cos^{-1}\frac{1}{\sqrt{3}}$$
. [4]

c) Find the equation of the sphere which passes through the points (1,-4,3)(1,-5,2)(1,-3,0) and whose centre lies on the plane x + y + z = 0. [5]

- **Q6)** a) A sphere of constant radius K passes through the origin and meets the axes in A,B,C. Prove that the centroid of the triangle ABC lies on the sphere $\Im(x^2 + y^2 + z^2) = 4K^2$ [5]
 - b) Find the equation of the right circular cone which has its vertex at the point (0,0,10) and whose intersection with the plane XOY is a circle of diameter 10.
 - c) Find the equation of the right circular cylinder of radius 3 and axis

$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$$
 [4]

- *Q7*) Solve any two:
 - a) Evaluate $\iint (x+y)^2 dxdy$ over the area bounded by an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 - b) Find the volume of the tetrahedron bounded by the co-ordinate planes and the plane x + y + z = 1 [6]
 - c) Find the moment of inertia about the initial line of the cardioide $r = a(1 + \cos \theta)$ [6]

OR

- *Q8)* Solve any two
 - a) Find the area bounded by the parabola $y = x^2$ & the Line y = 2x + 3.[7]
 - b) Evaluate $\iiint z(x^2 + y^2) dx dy dz$ over the volume of the cylinder $x^2 + y^2 = 1$ intercepted by the planes z = 2 and z = 3. [6]
 - c) Find the x-co-ordinate of center of gravity of an area bounded by the parabola $y^2 = x$ and the line x + y = 2. [6]

