Total No. of Questions-8] Seat No.
[Total No. of Printed Pages-4+2
[4756]-201
F.E. (Second Semester) EXAMINATION, 2015

ENGINEERING MATHEMATICS-II

(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt four questions : Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Neat diagrams must be drawn whenever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of electronic non-programmable calculator is allowed.
(v) Assume suitable data whenever necessary.

1. (a) Solve the following differential equations :
(i) $\frac{d y}{d x}=\cos x \cos y+\sin x \sin y$
(ii) $\left(x^{2}+y^{2}+1\right) d x-2 x y d y=0$.
(b) In a circuit containing inductance L, resistance R and voltage E, the current I is given by :

$$
\mathrm{E}=\mathrm{RI}+\mathrm{L} \frac{d \mathrm{I}}{d t}
$$

P.T.O.

Given :
$\mathrm{L}=640 \mathrm{H}, \mathrm{R}=250 \Omega, \mathrm{E}=500$ Volts.

I being zero when $t=0$. Find the time that elapses before it reaches 80% of its maximum value.

Or

2. (a) Solve :

$$
x \frac{d y}{d x}+y=y^{2} \log x
$$

(b) Solve the following :
(i) A body at temperature $100^{\circ} \mathrm{C}$ is placed in a room whose temperature is $20^{\circ} \mathrm{C}$ and cools to $60^{\circ} \mathrm{C}$ in 5 minutes. Find its temperature after a further inrerval of 3 minutes.
(ii) A steam pipe 20 cm in diameter is protected with a covering 6 cm thick for which the coefficient of thermal conductivity is $k=0.003 \mathrm{cal} / \mathrm{cm}$ deg. sec in steady state. Find the heat lost per hour through a meter length of the pipe, if the surface of pipe is at $200^{\circ} \mathrm{C}$ and outer surface of the covering is at $30^{\circ} \mathrm{C}$.
3. (a) Find a half range cosine series of $f(x)=\pi x-x^{2}$ in the interval $0<x<\pi$.
(b) Evaluate :

$$
\int_{0}^{\infty} \frac{x^{3}}{3^{x}} d x
$$

(c) Trace the following curve (any one) :
[4]
(i) $y^{2}=x^{5}(2 a-x)$
(ii) $r=a \sin 2 \theta$.

> Or
4. (a) If
[4]

$$
I_{n}=\int_{\pi / 4}^{\pi / 2} \cot ^{n} \theta d \theta
$$

prove that $\mathrm{I}_{n}=\frac{1}{n-1}-\mathrm{I}_{n-2}$. Hence evaluate I_{3}.
(b) Using differentiation under Integral sign prove that :
[4]

$$
\int_{0}^{\infty} \frac{e^{-x}-e^{-a x}}{x \sec x} d x=\frac{1}{2} \log \left(\frac{a^{2}+1}{2}\right)
$$

for $a>0$
(c) Find the length of the curve

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta)
$$

between $\theta=0$ to $\theta=2 \pi$.
5. (a) Show that the plane $4 x-3 y+6 z-35=0$ is tangential to the sphere $x^{2}+y^{2}+z^{2}-y-2 z-14=0$ and find the point of contact.
(b) Find the equation of the right circular cone whose vertex is given by $(1,-1,2)$ and axis is the line $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-2}$ and semi-vertical angle is 45°.
(c) Find the equation of right circular cylinder of radius 2 and axis is given by :

$$
\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z-3}{6}
$$

Or

6. (a) Find the equation at the sphere through the circle $x^{2}+y^{2}+z^{2}=1,2 x+3 y+4 z=5$ and which intersects the sphere $x^{2}+y^{2}+z^{2}+3(x-y+z)-56=0$ orthogonally.
(b) Find the equation of right circular cone with vertex at origin making equal angles with the co-ordinate axes and having generator with direction cosines proportional to $1,-2,2$.
(c) Obtain the equation of the right circular cylinder of radius 5 where axis is :

$$
\frac{x-2}{3}=\frac{y-3}{1}=\frac{z+1}{1}
$$

7. Attempt any two of the following :
(a) Change the order of integration in the double integral :

$$
\int_{0}^{5} \int_{2-x}^{2+x} f(x, y) d y d x
$$

(b) Evaluate :

$$
\int_{0}^{2} \int_{0}^{x} \int_{0}^{2 x+2 y} e^{x+y+z} d x d y d z
$$

(c) Find the centroid of the loop of the curve :

$$
r^{2}=a^{2} \cos 2 \theta
$$

Or

8. Attempt any two of the following :
(a) Evaluate :

$$
\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} e^{-x^{2}-y^{2}} d x d y
$$

(b) Evaluate :

$$
\iiint \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}} d x d y d z
$$

throughout the volume of ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(c) Prove that the moment of inertia of the area included between the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ about x-axis is $\frac{144}{35} \mathrm{M} a^{2}$, where M is the mass of the area included between the curves.

