UNIVERSITY OF PUNE [4361]-102

F. E. (Semester - II) Examination 2013 Engineering Physics (2012 Pattern)

[Time: 2 Hours] [Max. Marks:50]

Instructions:

- 1) Answer all the questions.
- 2) Black figures to the right indicate full marks.
- 3) Neat Diagram must be drawn wherever necesary.
- 4) Electronic Pocket calculator is allowed.
- 5) Assume suitable data, if necessary.

Constants : $h = 6.63x10^{-34}J$ -s $m_e = 9.31x10^{-31}kg$. $e = 1.6x10^{-19}C$ $c = 3x10^8 m/s$

- Q.1 a) Explain the formation Newton's ring with diagram and drive the diameter of bright ring. [06]
 - b) Discuss the use of ultrasonics for flaw Detection [03]
 - c) A auditorium of volume 5500m³ is found to have reverberation [03] time 2.5 secs. The sound absorbing surface of the auditorium has an area of 750m². Calculate the average absorption coefficient of the auditorium.

OR

- Q.2 a) Define magnetostriction effect. Explain how magnetostriction oscillator is used to produce ultrasonic waves with the help of neat circuit diagram.
 - b) Explain with diagram how interference Principle is used to design anti reflection caoting. [03]
 - c) Monochromatic light from He-Ne laser source (λ =6328A⁰) is incident normally on a diffraction grating having 6000lines/cm. Find the angle at which one would observe second order maximum. [03]
- Q.3a) Define Double refraction. Explain Huygen's Theory of Double refracting crystal with diagram. [06]
 - b) Define Fermi level. Plot the variation of Fermi level with the increase of temperature for n-type and p-type semiconductor.

c) Calculate the conductivity of Ge sample if the donor impurity is added to an extent of one part in 10^8 Ge atoms at room temperature. (Data Given: N_a =6.023x10 ²³ atoms/gm-mole. At. Wt. of Ge=72.6 Density of Ge=5.32gm/cc. , μ =3800 cm ² /v-s.)	[03]
OR	
Q.4a) Define Hall effect. Derive the expression of Hall coefficient, Hall Voltage and discuss their applications.	[06]
 b) Explain the process of recording Hologram with the help of LASER. c) At what angle of incidence should a beam of sodium light be directed upon the surface of diamond crystal to produce complete polarized light (Data Given: Critical angle for diamond=24.5°). 	[03] [03]
 Q.5a) Derive Schroedinger time independent wave equation. b) Define phase velocity, Group velocity and Derive their expressions. c) Calculate the De-Broglie wavelength associated with 1 Mev proton(m_p=1.67x10⁻²⁷ kg). 	[06] [04] [03]
OR	
Q.6a) Explain Heisenberg Uncertainty Principle and prove this principle using single slit Diffraction experiment.b) Calculate the energy and momentum of an electron confined in a rigid box	[06] [04]
of width 2A ⁰ for lowest energy state. c) Does the matter waves are electromagnetic waves? Explain.	[03]
Q.7 a) Explain the synthesis of nanoparticles through colloidal route with diagram.	[06]
b) Differentiate between Type-I and Type –II Superconductor with diagram	[04]
c) Explain two applications of Superconductivity.	[03]
OR	
Q.8 a) Explain Meissner effect and Critical magnetic field for superconductivity.	[06]
b) Explain the optical and electrical properties of nanoparticles.c) Explain the applications of nanoparticles in medical and electronic industry.	[04] [03]