Seat No.						
Total	No.	of Questions: 8] [Total No. of Printed Pages				
		[4261]-2	of Engg.			
		F. E. Examination - 2012 ENGINEERING PHYSICS	MAKY J			
		(2012 Course)	.eund			
Time	: 2 F	Hours] [Max. Marks	: 50			
Instru	uctions					
		(1) Assume suitable data, if necessary.				
		(2) Neat diagrams must be drawn wherever necessary.				
Q.1)	(A)	Prove that in Newton's Ring by reflected light the diameter of bright ring are proportional to the square root of the odd natural number.				
	(B)	Explain any one application of Ultrasonic Waves.	[03]			
	(C)	The average reverberation time of a hall is 1.5 sec. and the area of the interior surface is 3340m ² . If the volume of the hall is 13000m ³ . Find the absorption coefficient.	[03]			
		OR				
Q.2)	(A)	Explain how piezoelectric effect can be used for generating Ultrasonic Waves?	[06]			
	(B)	Define fringe width for wedge shaped film, obtain an expression for it.	[03]			
	(C)	Find the half angular width of the central maxima in the fraunhofer diffraction pattern of slit having width 10×10^{-5} cm. When illumininated by light having wave length 5000 A°.	[03]			

Q.3)	(A)	State the Phenomena of Double Refraction. Hence explain Huygen's Wave Theory of Double Refraction.	[06]
	(B)	Draw energy band picture for P-N junction in case of (i) Zero Bias (ii) Forward Bias (iii) Reverse Bias.	[03]
	(C)	A silver wire is in the form of a ribbon 0.5cm wide and 0.1 mm thick. When a current of 2A passes through the ribbon perpendicular to 0.8 Tesla Magnetic Field. Calculate the Hall Voltage produced.	
		(Given : Density of Silver = 10.5 gm/cc, Atomic Weight of Silver = 108 , Avogadros No. 6.02×10^{23} gm/mole)	[03]
		OR	
Q.4)	(A)	Derive an expression for Conductivity in Semiconductor.	[06]
	(B)	Explain any one application of Laser.	[03]
	(C)	How should the Polarizer and Analyzer be oriented to reduce intensity of beam to (i) 50% (ii) 0.25 of its original intensity?	[03]
Q.5)	(A)	Define Phase Velocity and Group Velocity. Hence obtain the relation between Vp and Vg for DeBroglie Wave.	[06]
	(B)	Explain the physical significance of ψ and $ \psi ^2$.	[04]
	(C)	An electron is bounded by an infinite potential well of width 2×10^{-8} cm. Calculate the lowest two permissible energies of an electron.	
		(Given : $h = 6.64 \times 10^{-34} \text{ J} - \text{sec.}, m = 9.1 \times 10^{-31} \text{kg}$)	[03]
		OR	
Q.6)	(A)	Derive Schroedinger's Time Independent Wave Equation.	[06]
	(B)	State DeBroglie's Hypothesis. Hence obtain the relation for DeBroglie's Wave Length in terms of Energy.	[04]
	(C)	The position and momentum of 1 kev electron are simultaneously measured. If its position is located within $1A^{\circ}$. Find the percentage of uncertainty in its momentum.	
		(Given: $h = 6.64 \times 10^{-34} \text{ J-sec.}, m = 9.1 \times 10^{-31} \text{ kg}$)	[03]
[4261]-2		2 Co	ntd.

Q.7)	(A)	Explain the Phenomena of Super-conductivity. Explain Type - I and Type - II Super-conductors.	[06]
	(B)	Explain any two applications of Nano-technology.	[04]
	(C)	Explain any two properties of Nano-particle.	[03]
		OR	
Q.8)	(A)	Explain Synthesis of Metal Nano-particle by Collidal Route Method.	[06]
	(B)	Explain BCS Theory of Super-conductivity.	[04]
	(C)	State and explain:	
		(a) Meissner Effect	
		(b) Persistent Current	[03]

