

Seat No.

F.E. (Semester – II) Examination, 2014 ENGINEERING PHYSICS (2012 Course)

Time : 2 Hours

Max. Marks: 50

Instructions : 1) Neat diagrams must be drawn wherever necessary.

- 2) Black figures to the right indicate full marks.
- 3) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- Assume suitable data, if necessary.

Physical constants : $h = 6.63 \times 10^{-34}$ J.Sec. $e = 1.6 \times 10^{-19} C$ $m_{\rho} = 9.1 \times 10^{-31} \text{ Kg}$ $C = 3 \times 10^8 \text{ m/s}.$

1. a) Prove that in Newton's ring by reflected light the diameter of bright ring is proportional to square root of the odd natural numbers. 6 b) Distinguish between musical sound and noise. 3 c) A monochromatic beam of light of wavelength 5893 A° is incident normally on the top of a glass which is coated by transparent material MgF₂ having R.I. 1.38. Calculate smallest thickness of the MgF₂ layer which will act as a non reflecting surface. 3 OR 2. a) Define magnetostriction effect. Explain how magnetostriction oscillator is used to produce ultrasonic waves, with the help of neat ckt. diagram. 6 b) What is diffraction ? What are the types of diffraction ? Distinguish between them (any two 3 point). c) The average reverberation time of a hall is 1.5 sec. and the area of interior surface is 3340 m². If the volume of the hall is 13000 m³. Find the absorption coefficient. 3 3. a) Explain the construction and working of Ruby laser with the help of energy level diagram. 6 b) Explain Fermi dirac probability distribution function with the meaning of each symbol in it. 3 c) Calculate the conductivity of pure silicon at room temperature when the concentration of charge carriers is 1.6×10^{10} /cm³. Given that, $\mu_e = 1500$ cm²/V.Sec., $\mu_h = 500$ cm²/V.Sec. 3 OR P.T.O.

[4656] – 204

4.	a)	Explain Hall effect. Derive the equation of Hall voltage and Hall coefficient.	6
	b)	Explain propagation of light in a doubly refracting crystal when the optic axis is parallel to the crystal surface, with the help of neat diagram.	3
	c)	How should the polarizer and analyzer be oriented to reduce the beam of light to i) 50% ii) 25% of its original intensity.	3
5.	a)	Deduce Schrodinger time independent wave equation.	6
	b)	Define group velocity. Show that the group velocity of matter wave is equal to particle velocity.	4
	c)	Calculate the de Broglie wavelength of electron having kinetic energy 1 KeV. OR	3
6.	a)	State Heisenberg's uncertainty principle and prove it by thought experiment of electron diffraction at a single slit.	6
	b)	What is wave function ? Explain what is normalization of wave function.	4
	c)	An electron is trapped in a rigid box of width $2 A^\circ$. Find its lowest energy level.	3
7.	a)	Explain critical field of a superconductor and give any three points to differentiate type – I and type – II superconductors.	6
	b)	Explain the applications of nanoparticles in automobile and electronic industry.	4
	c)	Explain electrical properties of nano-particles. OR	3
8.	a)	Explain the synthesis of nanoparticles in automobile and electronic by colloidal route with diagram.	6
	b) c)	Explain the Meissner effect. What important property of superconductor it explain. Explain two applications of superconductivity.	4 3

B/II/14/