Total No.	of Questions	: 6	1
-----------	--------------	-----	---

SEAT No. :	

[Total No. of Pages : 2

P43

APR - 18/TE/Insem. - 45

T.E. (Computer Engineering)

DIGITAL SIGNAL PROCESSING APPLICATIONS

(2012 Pattern) (Semester - II) (310253)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Q1 or Q2, Q3 or Q4, and Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.
- Q1) a) A CT signal having frequency 75 Hz is sampled at a rate of 1500 samples/sec. Obtain
 - i) Number of samples per cycle.
 - ii) Digital/Discrete frequency f and ω.
 - iii) Minimum sampling rate to avoid aliasing effect.
 - iv) Period of a DT signal
 - b) Classify DT systems as Recursive v/s Non-Recursive and FIR v/s IIR system with suitable example. [5]

OR

- **Q2)** a) Why the problem of aliasing is observed in sampling process? Why quantization is required after sampling process? [5]
 - b) Obtain the linear convolution of following DT signals-

$$x(n) = \delta(n) - 2\delta(n-2)$$
 and $h(n) = \delta(n+1) + 2\delta(n-1)$ [5]

- Q3) a) State and prove the periodicity property of Fourier Transform(FT). What is the necessary and sufficient condition for the existence of FT? [5]
 - b) Draw the basic butterfly structure for DIT FFT and DIF FFT algorithm. From this, estimate the total number of multiplications and additions involved in the computation of N point DFT. [5]

OR

P.T.O.

- **Q4)** a) Use Linear Transformation Matrix to obtain 4 point DFT of $x(n) = \{1, -2, 2, 1\}$
 - b) How DFT is obtained from FT? What is the significance of N in N-point DFT? Define DFT in terms of twiddle factor W. [5]
- **Q5)** a) Using Power series method, obtain the IZT of $X(Z) = \frac{1}{(1-aZ^{-1})}$ (left sided sequence) [5]
 - b) Obtain ZT of a DT signal using ZT properties where, x(n) = n.u(n-1) specify the ROC.[5]

OR

- **Q6)** a) Define ROC. State its properties.
 - b) What is a pole zero plot of ZT? Obtain it for a system having impulse response- $h(n) = (2)^n u(n)$. [5]

[5]

